|   | 
Details
   web
Records
Author Gershenson, M. E.; Gong, D.; Sato, T.; Karasik, B. S.; Sergeev, A. V.
Title Millisecond electron-phonon relaxation in ultrathin disordered metal films at millikelvin temperatures Type Journal Article
Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal (up)
Volume 79 Issue Pages 2049-2051
Keywords HEB detector, FIR, far infrared
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ heb_eph_interaction_Gershenzon Serial 315
Permanent link to this record
 

 
Author Angeluts, A. A.; Bezotosnyi, V. V.; Cheshev, E. A.; Goltsman, G. N.; Finkel, M. I.; Seliverstov, S. V.; Evdokimov, M. N.; Gorbunkov, M. V.; Kitaeva, G. Kh.; Koromyslov, A. L.; Kostryukov, P. V.; Krivonos, M. S.; Lobanov, Yu. V.; Shkurinov, A. P.; Sarkisov, S. Yu.; Tunkin, V. G.
Title Compact 1.64 THz source based on a dual-wavelength diode end-pumped Nd:YLF laser with a nearly semiconfocal cavity Type Journal Article
Year 2014 Publication Laser Phys. Lett. Abbreviated Journal (up)
Volume 11 Issue 1 Pages 015004 (1 to 4)
Keywords HEB applications, HEB detector applications, short THz pulses detection
Abstract We describe a compact dual-wavelength (1.047 and 1.053 μm) diode end-pumped Q-switched Nd:YLE laser source which has a number of applications in demand. In order to achieve its dual-wavelength operation it is suggested for the first time to use essentially nonmonotonous dependences of the threshold pump powers at these wavelengths on the cavity length in the region of the cavity semiconfocal configuration under a radius of the pump beam smaller than the radius of the zero Gaussian mode. Here we demonstrate one of the most interesting applications for this laser: difference frequency generation in a GaSe crystal at a frequency of 1.64 THz. A superconducting hot-electron bolometer is used to detect the THz power generated and to measure its pulse characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1076
Permanent link to this record
 

 
Author Palma, F.; Teppe, F.; Fatimy, A. E.; Green, R.; Xu, J.; Vachontin, Y.; Tredicucci, A.; Goltsman, G.; Knap, W.
Title THz communication system based on a THz quantum cascade laser and a hot electron bolometer Type Conference Article
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal (up) 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves
Volume Issue Pages 11623798 (1 to 2)
Keywords QCL, HEB detector
Abstract We present the experimental study of the direct emission – detection system based on the THz Quantum Cascade Laser as a source and Hot Electron Bolometer (HEB) detector – in view of its application as an optical communication system. We show that the system can efficiently transmit the QCL Terahertz pulses. We estimate the maximal modulation speed of the system to be about several GHz and show that it is limited only by the QCL pulse power supply, detector amplifier and connection line/wires parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1391
Permanent link to this record
 

 
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal (up) Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author Seliverstov, S.; Maslennikov, S.; Ryabchun, S.; Finkel, M.; Klapwijk, T. M.; Kaurova, N.; Vachtomin, Yu.; Smirnov, K.; Voronov, B.; Goltsman, G.
Title Fast and sensitive terahertz direct detector based on superconducting antenna-coupled hot electron bolometer Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (up) IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300304
Keywords HEB detector responsivity, HEB model, numerical calculations, numerical model
Abstract We characterize superconducting antenna-coupled hot-electron bolometers for direct detection of terahertz radiation operating at a temperature of 9.0 K. The estimated value of responsivity obtained from lumped-element theory is strongly different from the measured one. A numerical calculation of the detector responsivity is developed, using the Euler method, applied to the system of heat balance equations written in recurrent form. This distributed element model takes into account the effect of nonuniform heating of the detector along its length and provides results that are in better agreement with the experiment. At a signal frequency of 2.5 THz, the measured value of the optical detector noise equivalent power is 2.0 × 10-13 W · Hz-0.5. The value of the bolometer time constant is 35 ps. The corresponding energy resolution is about 3 aJ. This detector has a sensitivity similar to that of the state-of-the-art sub-millimeter detectors operating at accessible cryogenic temperatures, but with a response time several orders of magnitude shorter.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 953
Permanent link to this record