toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stucki, D.; Walenta, N.; Vannel, F.; Thew, R.T.; Gisin, N.; Zbinden, H.; Gray, S.; Towery, C. R.; Ten, S. doi  openurl
  Title High rate long-distance quantum key distribution over 250 km of ultra low loss fibres Type Journal Article
  Year 2009 Publication New J. Phys. Abbreviated Journal (up)  
  Volume 11 Issue 7 Pages 075003  
  Keywords SSPD, quantum cryptography, QKD, COW  
  Abstract We present a fully automated quantum key distribution prototype running at 625 MHz clock rate. Taking advantage of ultra low loss fibres and low-noise superconducting detectors, we can distribute 6,000 secret bits per second over 100 km and 15 bits per second over 250km.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 610  
Permanent link to this record
 

 
Author Scheel, Stefan openurl 
  Title Single-photon sources–an introduction Type Journal Article
  Year 2009 Publication J. Modern Opt. Abbreviated Journal (up)  
  Volume 56 Issue 2-3 Pages 141-160  
  Keywords LOQC; quantum cryptography; QKD  
  Abstract This review surveys the physical principles and recent developments in manufacturing single-photon sources. Special emphasis is placed on important potential applications such as linear optical quantum computing (LOQC), quantum key distribution (QKD) and quantum metrology that drive the development of these sources of single photons. We discuss the quantum-mechanical properties of light prepared in a quantum state of definite photon number and compare it with coherent light that shows a Poissonian distribution of photon numbers. We examine how the single-photon fidelity directly influences the ability to transmit secure quantum bits over a predefined distance. The theoretical description of modified spontaneous decay, the main principle behind single-photon generation, provides the background for many experimental implementations such as those using microresonators or pillar microcavities. The main alternative way to generate single photons using postselection of entangled photon pairs from parametric down-conversion, will be discussed. We concentrate on describing the underlying physical principles and we will point out limitations and open problems associated with single-photon production.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 669  
Permanent link to this record
 

 
Author Wiechers, C.; Lydersen, L.; Wittmann, C.; Elser, D.; Skaar, J.; Marquardt, Ch; Makarov, V.; Leuchs, G. openurl 
  Title After-gate attack on a quantum cryptosystem Type Journal Article
  Year 2011 Publication New J. Phys. Abbreviated Journal (up)  
  Volume 13 Issue 1 Pages 14  
  Keywords quantum cryptography; hacking; interception; attack; SPD; APD; QKD  
  Abstract We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The attack can remain unnoticed, since the faked states do not increase the error rate per se. This allows for an intercept-resend attack, where an eavesdropper transfers her detection events to the legitimate receiver without causing any errors. As a side effect, afterpulses, originating from accumulated charge carriers in the detectors, increase the error rate. We have experimentally tested detectors of the system id3110 (Clavis2) from ID Quantique. We identify the parameter regime in which the attack is feasible despite the side effect. Furthermore, we outline how simple modifications in the implementation can make the device immune to this attack.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 730  
Permanent link to this record
 

 
Author Takemoto, K.; Nambu, Y.; Miyazawa, T.; Sakuma, Y.; Yamamoto, T.; Yorozu, S.; Arakawa, Y. doi  openurl
  Title Quantum key distribution over 120 km using ultrahigh purity single-photon source and superconducting single-photon detectors Type Journal Article
  Year 2015 Publication Sci. Rep. Abbreviated Journal (up)  
  Volume 5 Issue Pages 14383  
  Keywords SSPD, SNSPD applications, quantum key distribution, QKD  
  Abstract Advances in single-photon sources (SPSs) and single-photon detectors (SPDs) promise unique applications in the field of quantum information technology. In this paper, we report long-distance quantum key distribution (QKD) by using state-of-the-art devices: a quantum-dot SPS (QD SPS) emitting a photon in the telecom band of 1.5 μm and a superconducting nanowire SPD (SNSPD). At the distance of 100 km, we obtained the maximal secure key rate of 27.6 bps without using decoy states, which is at least threefold larger than the rate obtained in the previously reported 50-km-long QKD experiment. We also succeeded in transmitting secure keys at the rate of 0.307 bps over 120 km. This is the longest QKD distance yet reported by using known true SPSs. The ultralow multiphoton emissions of our SPS and ultralow dark count of the SNSPD contributed to this result. The experimental results demonstrate the potential applicability of QD SPSs to practical telecom QKD networks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1104  
Permanent link to this record
 

 
Author Esteban, Eduin; Serna, Hernandez openurl 
  Title Quantum key distribution protocol with private-public key Type Journal Article
  Year 2009 Publication arXiv Abbreviated Journal (up) arXiv  
  Volume Issue Pages 3  
  Keywords quantum cryptography; QKD; protocol  
  Abstract A quantum cryptographic protocol based in public key cryptography combinations and private key cryptography is presented. Unlike the BB84 protocol 1 and its many variants 2,3 two quantum channels are used. The present research does not make reconciliation mechanisms of information to derive the key. A three related system of key distribution are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes arXiv: 0908.2146 Approved no  
  Call Number RPLAB @ gujma @ Serial 756  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: