|   | 
Details
   web
Records
Author Codreanu, Iulian; Boreman, Glenn D.
Title Infrared microstrip dipole antennas Type Journal Article
Year 2001 Publication Microwave and Optical Technology Letters Abbreviated Journal (up) Microw Opt Technol Lett
Volume 29 Issue 6 Pages 381-383
Keywords optical antennas
Abstract Abstract 10.1002/mop.1184.abs We report on the successful use of niobium microbolometers coupled to microstrip dipole antennas for the detection of midinfrared radiation. Measurements of the detector response versus antenna length performed at the 10.6 μm wavelength allowed us to identify the first three current-wave resonances along the antenna arms. The detector response was also measured as a function of the radiation wavelength in the 911 μm spectral domain. Excellent agreement between the experimental results and finite-difference time-domain (FDTD) predictions was obtained.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 738
Permanent link to this record
 

 
Author Brown, E. R.; Lee, A. W. M.; Navi, B. S.; Bjarnason, J. E.
Title Characterization of a planar self-complementary square-spiral antenna in the THz region Type Journal Article
Year 2006 Publication Microwave and Optical Technology Letters Abbreviated Journal (up) Microwave Opt Technol Lett
Volume 48 Issue 3 Pages 524-529
Keywords optical antennas; square spiral antenna; self complementary THz; photomixing; lens; method of moments; geometric optics; physical optics
Abstract This paper describes a compact, self-complementary square-spiral antenna on a GaAs substrate with a broadside high-directivity (~9 dB) frequency-independent pattern when coupled through a silicon hyperhemisphere. The driving-point resistance undulates between ~00 and 300Ω from 200 GHz to 1 THz—much higher than the 72Ω value from Booker's modified formula, but quite beneficial for coupling to high-impedance broadband devices
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 736
Permanent link to this record
 

 
Author Heeres, R.W.; Dorenbos, S.N.; Koene, B.; Solomon, G.S.; Kouwenhoven, L.P.; Zwiller, V.
Title On-Chip Single Plasmon Detection Type Journal Article
Year 2010 Publication Nano Letters Abbreviated Journal (up) Nano Lett.
Volume 10 Issue Pages 661-664
Keywords optical antennas; SSPD; Single surface plasmons; superconducting detectors; semiconductor quantum dots; nanophotonics
Abstract Surface plasmon polaritons (plasmons) have the potential to interface electronic and optical devices. They could prove extremely useful for integrated quantum information processing. Here we demonstrate on-chip electrical detection of single plasmons propagating along gold waveguides. The plasmons are excited using the single-photon emission of an optically emitting quantum dot. After propagating for several micrometers, the plasmons are coupled to a superconducting detector in the near-field. Correlation measurements prove that single plasmons are being detected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 620
Permanent link to this record
 

 
Author Bryant, Garnett W.; García de Abajo, F. Javier; Aizpurua, Javier
Title Mapping the Plasmon Resonances of Metallic Nanoantennas Type Journal Article
Year 2008 Publication Nano Letters Abbreviated Journal (up) Nano Lett.
Volume 5 Issue 2 Pages 631-636
Keywords optical antennas
Abstract We study the light scattering and surface plasmon resonances of Au nanorods that are commonly used as optical nanoantennas in analogy to dipole radio antennas for chemical and biodetection field-enhanced spectroscopies and scanned-probe microscopies. With the use of the boundary element method, we calculate the nanorod near-field and far-field response to show how the nanorod shape and dimensions determine its optical response. A full mapping of the size (length and radius) dependence for Au nanorods is obtained. The dipolar plasmon resonance wavelength λ shows a nearly linear dependence on total rod length L out to the largest lengths that we study. However, L is always substantially less than λ/2, indicating the difference between optical nanoantennas and long-wavelength traditional λ/2 antennas. Although it is often assumed that the plasmon wavelength scales with the nanorod aspect ratio, we find that this scaling does not apply except in the extreme limit of very small, spherical nanoparticles. The plasmon response depends critically on both the rod length and radius. Large (500 nm) differences in resonance wavelength are found for structures with different sizes but with the same aspect ratio. In addition, the plasmon resonance deduced from the near-field enhancement can be significantly red-shifted due to retardation from the resonance in far-field scattering. Large differences in near-field and far-field response, together with the breakdown of the simple scaling law must be accounted for in the choice and design of metallic λ/2 nanoantennas. We provide a general, practical map of the resonances for use in locating the desired response for gold nanoantennas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 737
Permanent link to this record
 

 
Author Alda, Javier; Rico-García, José M.; López-Alonso, José M.; Boreman, G.
Title Optical antennas for nano-photonic applications Type Journal Article
Year 2005 Publication Nanotechnology Abbreviated Journal (up) Nanotech.
Volume 16 Issue 5 Pages S230-S234
Keywords optical antennas
Abstract Antenna-coupled optical detectors, also named optical antennas, are being developed and proposed as alternative detection devices for the millimetre, infrared, and visible spectra. Optical and infrared antennas represent a class of optical components that couple electromagnetic radiation in the visible and infrared wavelengths in the same way as radioelectric antennas do at the corresponding wavelengths. The size of optical antennas is in the range of the detected wavelength and they involve fabrication techniques with nanoscale spatial resolution. Optical antennas have already proved and potential advantages in the detection of light showing polarization dependence, tuneability, and rapid time response. They also can be considered as point detectors and directionally sensitive elements. So far, these detectors have been thoroughly tested in the mid-infrared with some positive results in the visible. The measurement and characterization of optical antennas requires the use of an experimental set-up with nanometric resolution. On the other hand, a computation simulation of the interaction between the material structures and the incoming electromagnetic radiation is needed to explore alternative designs of practical devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 734
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal (up) Nat. Photon.
Volume 4 Issue Pages 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 747
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek
Title Antennas for light Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal (up) Nat. Photon.
Volume 5 Issue 2 Pages 83-90
Keywords optical antennas
Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 748
Permanent link to this record
 

 
Author Huang, Kevin C. Y.; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L.
Title Power flow from a dipole emitter near an optical antenna Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal (up) Opt. Express
Volume 19 Issue 20 Pages 19084-19092
Keywords optical antennas
Abstract Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 743
Permanent link to this record
 

 
Author Hu, Xiaolong; Dauler, Eric A.; Molnar, Richard J.; Berggren, Karl K.
Title Superconducting nanowire single-photon detectors integrated with optical nano-antennae Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal (up) Opt. Express
Volume 19 Issue 1 Pages 17-31
Keywords optical antennas
Abstract Optical nano-antennae have been integrated with semiconductor lasers to intensify light at the nanoscale and photodiodes to enhance photocurrent. In quantum optics, plasmonic metal structures have been used to enhance nonclassical light emission from single quantum dots. Absorption and detection of single photons from free space could also be enhanced by nanometallic antennae, but this has not previously been demonstrated. Here, we use nano-optical transmission effects in a one-dimensional gold structure, combined with optical cavity resonance, to form optical nano-antennae, which are further used to couple single photons from free space into a 80-nm-wide superconducting nanowire. This antenna-assisted coupling enables a superconducting nanowire single-photon detector with 47% device efficiency at the wavelength of 1550 nm and 9-μm-by-9-μm active area while maintaining a reset time of only 5 ns. We demonstrate nanoscale antenna-like structures to achieve exceptional efficiency and speed in single-photon detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 745
Permanent link to this record
 

 
Author Novotny, Lukas
Title Effective wavelength scaling for optical antennas Type Journal Article
Year 2007 Publication Phys. Rev. Lett. Abbreviated Journal (up) Phys. Rev. Lett.
Volume 98 Issue 26 Pages 266802(1-4)
Keywords optical antennas
Abstract In antenna theory, antenna parameters are directly related to the wavelength λ of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing λ by a linearly scaled effective wavelength λeff=n1+n2λ/λp, with λp being the plasma wavelength and n1, n2 being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii Râ‰<aa>λ. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 749
Permanent link to this record