|   | 
Details
   web
Records
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal (down) Proc. 28th European Microwave Conf.
Volume 1 Issue Pages 294-299
Keywords NbN HEB mixers
Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 28th European Microwave Conference
Notes Approved no
Call Number Serial 1580
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Berg, T.; Merkel, H.; Kollberg, E.; Drakinskiy, V.; Voronov, B.; Gol’tsman, G.
Title Optimization of HEB mixer for the Herschel Space Observatory Type Abstract
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 16
Keywords NbN HEB mixers, applications
Abstract A mixer development for the HIFI instrument of the Herschel Space Observatory has come to the final stage. In our paper and conference presentation we will describe the most important details of the Band 6 Low and High Mixer Unit design. Special attention will be given to the optimization of the hot- electron bolometer mixer chip, which is based on 3.5nm NbN superconducting film on silicon. As the HEB’s local oscillator power requirements depend on the bolometer size, we have compared mixer noise temperature for different bolometer width- to- length ratio. A trade- off between mixer performance and local oscillator power requirements results in the mixer units equipped with optimized mixer chips, providing the largest coverage of the Band6 RF band with the lowest possible receiver noise. A short account of the beam pattern measurements of Band6 mixers will be given as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1490
Permanent link to this record
 

 
Author Loudkov, D.; Khosropanah, P.; Cherednichenko, S.; Adam, A.; MerkeI, H.; Kollberg, E.; Gol'tsman, G.
Title Broadband fourier transform spectrometer (FTS) measurements of spiral and double-slot planar antennas at THz frequencies Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 373-369
Keywords NbN HEB mixers
Abstract The direct responses of NbN phonon-cooled hot electron bolometer (HEB) mixers, integrated with different planar antennas, are measured, using Fourier Transform Spectrometer (F1S). One spiral antenna and several double slot antennas, designed for 0.6, 1.4, 1.6, 1.8 and 2.5 THz central frequencies, are investigated. The Optimization of the measurement set-up is discussed in terms of the beam splitter and the F11S-to-HEB coupling. The result shows that the spiral antenna is circular polarized and has a bandwidth of about 2 THz. The frequency bands of double slot antennas show some shift from the design values and their relative bandwidth increases by increasing the design frequency. The antenna responses do not depend on the HEB bias point and temperature, as long as the device is in the resistive state.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1530
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Kollberg, E.; Loudkov, D.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Gershenzon, E.
Title Local oscillator power requirement and saturation effects in NbN HEB mixers Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 273-285
Keywords NbN HEB mixers, LO power, local oscillator power, saturation effect, dynamic range
Abstract The local oscillator power required for NbN hot-electron bolometric mixers (P LO ) was investigated with respect to mixer size, critical temperature and ambient temperature. P LO can be decreased by a factor of 10 as the mixer size decreases from 4×0.4 µm 2 to 0.6×0.13 µm 2 . For the smallest volume mixer the optimal local oscillator power was found to be 15 nW. We found that for such mixer no signal compression was observed up to an input signal of 2 nW which corresponds to an equivalent input load of 20,000 K. For a constant mixer volume, reduction of T c can decrease optimal local oscillator power at least by a factor of 2 without a deterioration of the receiver noise temperature. Bath temperature was found to have minor effect on the receiver characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 318
Permanent link to this record
 

 
Author Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D.
Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 517-522
Keywords YBCO HTS HEB mixers
Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1556
Permanent link to this record