toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal (up) IEEE Trans. Microwave Theory Techn.  
  Volume 54 Issue 7 Pages 2944-2948  
  Keywords NbN HEB mixers  
  Abstract In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1448  
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol’tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudziński, M. url  doi
openurl 
  Title Reduction of phonon escape time for nbn hot electron bolometers by using gan buffer layers Type Journal Article
  Year 2017 Publication IEEE Trans. Terahertz Sci. Technol. Abbreviated Journal (up) IEEE Trans. Terahertz Sci. Technol.  
  Volume 7 Issue 1 Pages 53-59  
  Keywords NbN HEB mixer  
  Abstract In this paper, we investigated the influence of the GaN buffer layer on the phonon escape time of phonon-cooled hot electron bolometers (HEBs) based on NbN material and compared our findings to conventionally employed Si substrate. The presented experimental setup and operation of the HEB close to the critical temperature of the NbN film allowed for the extraction of phonon escape time in a simplified manner. Two independent experiments were performed at GARD/Chalmers and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. By fitting the normalized IF measurement data to the heat balance equations, the escape time as a fitting parameter has been deduced and amounts to 45 ps for the HEB based on Si substrate as in contrast to a significantly reduced escape time of 18 ps for the HEB utilizing the GaN buffer layer under the assumption that no additional electron diffusion has taken place. This study indicates a high phonon transmissivity of the NbN-to-GaN interface and a prospective increase of IF bandwidth for HEB made of NbN on GaN buffer layers, which is desirable for future THz HEB heterodyne receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-3446 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1330  
Permanent link to this record
 

 
Author Nikogosyan, A. S.; Martirosyan, R. M.; Hakhoumian, A. A.; Makaryan, A. H.; Tadevosyan, V. R.; Goltsman, G. N.; Antipov, S. V. url  doi
openurl 
  Title Effect of absorption on the efficiency of terahertz radiation generation in the metal waveguide partially filled with nonlinear crystal LiNbO3, DAST or ZnTe Type Journal Article
  Year 2019 Publication J. Contemp. Phys. Abbreviated Journal (up) J. Contemp. Phys.  
  Volume 54 Issue 1 Pages 97-104  
  Keywords nonlinear crystal, THz, waveguide  
  Abstract The influence of terahertz (THz) radiation absorption on the efficiency of generation of coherent THz radiation in the system ‘nonlinear-optical crystal partially filling the cross section of a rectangular metal waveguide’ has been investigated. The efficiency of the nonlinear frequency conversion of optical laser radiation to the THz range depends on the loss in the system and the fulfillment of the phase-matching (FM) condition in a nonlinear crystal. The method of partially filling of a metal waveguide with a nonlinear optical crystal is used to ensure phase matching. The phase matching is achieved by numerical determination of the thickness of the nonlinear crystal, that is the degree of partial filling of the waveguide. The attenuation of THz radiation caused by losses both in the metal walls of the waveguide and in the crystal was studied, taking into account the dimension of the cross section of the waveguide, the degree of partial filling, and the dielectric constant of the crystal. It is shown that the partial filling of the waveguide with a nonlinear crystal results in an increase in the efficiency of generation of THz radiation by an order of magnitude, owing to the decrease in absorption.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1068-3372 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1289  
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. url  openurl
  Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
  Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal (up) J. of communications technol. & electronics  
  Volume 48 Issue 6 Pages 671-675  
  Keywords NbN HEB mixers  
  Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.  
  Address  
  Corporate Author Thesis  
  Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no  
  Call Number Vakhtomin2003 Serial 1522  
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M. url  openurl
  Title Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal (up) Physics of Vibrations  
  Volume 9 Issue 4 Pages 242-245  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1550  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Antipov, S. V.; Vakhtomin, Y. B.; Goltsman, G. N.; Gershenzon, E. M.; Cherednichenko, S. I.; Kroug, M.; Kollberg, E. url  openurl
  Title Conversion and noise bandwidths of terahertz NbN hot-electron bolometer mixers Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal (up) Physics of Vibrations  
  Volume 9 Issue 3 Pages 205-210  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1551  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 405-412  
  Keywords NbN HEB mixers  
  Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 236-241  
  Keywords HEB mixer, NbN, direct detection effect  
  Abstract We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Northampton, Massachusetts, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 344  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal (up) Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 688-689  
  Keywords NbN HEB mixers  
  Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1445  
Permanent link to this record
 

 
Author Zhang, W.; Jiang, L.; Lin, Z. H.; Yao, Q. J.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Yu. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  openurl
  Title Development of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 209-213  
  Keywords NbN HEB mixers  
  Abstract In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolometer) mixer measured at 500 and 850GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled by a 4-K close-cycled refrigerator. Measured receiver noise temperature at 850 and 500GHz are 3000K and 2500K respectively with wire grid as beamsplitter, while the lowest receiver noise temperature is found to be approximately 1200K with Mylar film. The theoretical receiver noise temperature (taking into account the elliptical polarization of log-spiral antenna) is consistent with measured one. The receiver noise temperature and conversion gain with 15-μm Mylar film as the beamsplitter at 500GHz are thoroughly investigated for different LO pumping levels and dc biases. The stability of the mixer’s IF output power is also demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1470  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: