|   | 
Details
   web
Records
Author Zhang, W.; Khosropanah, P.; Gao, J. R.; Kollberg, E. L.; Yngvesson, K. S.; Bansal, T.; Barends, R.; Klapwijk, T. M.
Title Quantum noise in a terahertz hot electron bolometer mixer Type Journal Article
Year 2010 Publication Applied Physics Letters Abbreviated Journal (up) Appl. Phys. Lett.
Volume 96 Issue 11 Pages 111113-(1-3)
Keywords HEB mixer, quantum limit, quantum noise, vacuum box, THz, Terahertz
Abstract We have measured the noise temperature of a single, sensitive superconducting NbN hot electron bolometer (HEB) mixer in a frequency range from 1.6 to 5.3 THz, using a setup with all the key components in vacuum. By analyzing the measured receiver noise temperature using a quantum noise (QN) model for HEB mixers, we confirm the effect of QN. The QN is found to be responsible for about half of the receiver noise at the highest frequency in our measurements. The beta-factor (the quantum efficiency of the HEB) obtained experimentally agrees reasonably well with the calculated value.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 624
Permanent link to this record
 

 
Author Tretyakov, Ivan; Ryabchun, Sergey; Finkel, Matvey; Maslennikova, Anna; Kaurova, Natalia; Lobastova, Anastasia; Voronov, Boris; Gol'tsman, Gregory
Title Low noise and wide bandwidth of NbN hot-electron bolometer mixers Type Journal Article
Year 2011 Publication Appl. Phys. Lett. Abbreviated Journal (up) Appl. Phys. Lett.
Volume 98 Issue Pages 033507 (1 to 3)
Keywords NbN HEB mixer
Abstract We report a record double sideband noise temperature of 600 K (5hν/kB) offered by a NbN hot-electron bolometer receiver at 2.5 THz. Allowing for standing wave effects, this value was found to be constant in the intermediate frequency range 1–7 GHz, which indicates that the mixer has an unprecedentedly large noise bandwidth in excess of 7 GHz. The insight into this is provided by gain bandwidth measurements performed at the superconducting transition. They show that the dependence of the bandwidth on the mixer length follows the model for an HEB mixer with diffusion and phonon cooling of the hot electrons.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 638
Permanent link to this record
 

 
Author Burke, P. J.; Schoelkopf, R. J.; Prober, D. E.; Skalare, A.; Karasik, B. S.; Gaidis, M. C.; McGrath, W. R.; Bumble, B.; Leduc, H. G.
Title Spectrum of thermal fluctuation noise in diffusion and phonon cooled hot-electron mixers Type Journal Article
Year 1998 Publication Applied Physics Letters Abbreviated Journal (up) Appl. Phys. Lett.
Volume 72 Issue 12 Pages 1516-1518
Keywords HEB mixer; thermal fluctuation noise; TFN
Abstract A systematic study of the intermediate frequency noise bandwidth of Nb thin-film superconducting hot-electron bolometers is presented. We have measured the spectrum of the output noise as well as the conversion efficiency over a very broad intermediate frequency range (from 0.1 to 7.5 GHz) for devices varying in length from 0.08 μm to 3 μm. Local oscillator and rf signals from 8 to 40 GHz were used. For a device of a given length, the spectrum of the output noise and the conversion efficiency behave similarly for intermediate frequencies less than the gain bandwidth, in accordance with a simple thermal model for both the mixing and thermal fluctuation noise. For higher intermediate frequencies the conversion efficiency decreases; in contrast, the noise decreases but has a second contribution which dominates at higher frequency. The noise bandwidth is larger than the gain bandwidth, and the mixer noise is low, between 120 and 530 K (double side band).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 760
Permanent link to this record
 

 
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal (up) Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L.
Title Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal (up) Appl. Phys. Lett.
Volume 86 Issue Pages 244104 (1 to 3)
Keywords HEB, QCL
Abstract We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 905
Permanent link to this record