toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Yu; Shcherbatenko, M.; Korneev, A; Pernice, W.; Goltsman, G. url  openurl
  Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Volume
  Year 2017 Publication Proc. SPBOPEN Abbreviated Journal (down) Proc. SPBOPEN  
  Volume Issue Pages 421-422  
  Keywords waveguide, SSPD, SNSPD  
  Abstract By adopting a travelling-wave geometry approach, integrated superconductor- nanophotonic devices were fabricated. The architecture consists of a superconducting NbN- nanowire atop of a silicon nitride (Si 3 N 4 ) nanophotonic waveguide. NbN-nanowire was operated as a single-photon counting detector, with up to 92% on-chip detection efficiency (OCDE), in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 10^6 in C-band at 1550 nm wavelength.  
  Address St. Petersburg, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1140 Approved no  
  Call Number Serial 1256  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Gol’tsman, G. N.; Smirnov, K. url  doi
isbn  openurl
  Title Superconducting quantum detector for astronomy and X-ray spectroscopy Type Conference Article
  Year 2002 Publication Proc. Int. Workshop on Supercond. Nano-Electronics Devices Abbreviated Journal (down) Proc. Int. Workshop on Supercond. Nano-Electronics Devices  
  Volume Issue Pages 201-210  
  Keywords NbN SSPD, SNSPD, SQD, superconducting quantum detectors, X-ray spectroscopy  
  Abstract We propose the novel concept of ultra-sensitive energy-dispersive superconducting quantum detectors prospective for applications in astronomy and X-ray spectroscopy. Depending on the superconducting material and operation conditions, such detector may allow realizing background limited noise equivalent power 10−21 W Hz−1/2 in the terahertz range when exposed to 4-K background radiation or counting of 6-keV photon with almost 10—4 energy resolution. Planar layout and relatively simple technology favor integration of elementary detectors into a detector array.  
  Address Naples, Italy  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Boston, MA Editor Pekola, J.; Ruggiero, B.; Silvestrini, P.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4615-0737-6 Medium  
  Area Expedition Conference International Workshop on Superconducting Nano-Electronics Devices, May 28-June 1, 2001  
  Notes Approved no  
  Call Number semenov2002superconducting Serial 1525  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal (down) Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address Monterey, CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wold, J.; Davidson, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no  
  Call Number Serial 1829  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Sergeev, A.; Semenov, A. D. doi  openurl
  Title Picosecond response of YBaCuO films to electromagnetic radiation Type Conference Article
  Year 1990 Publication Proc. European Conf. High-Tc Thin Films and Single Crystals Abbreviated Journal (down) Proc. European Conf. High-Tc Thin Films and Single Crystals  
  Volume Issue Pages 457-462  
  Keywords YBCO HTS detectors  
  Abstract Radiation-induced change of the resistance was studied in the resistive state of YBaCuO films. Electron-phonon relaxation time T h was determmed from direct ep measurements and analysis of quasistationary electron heating. Temperature dependence of That TS 40 K was found to – ep be T h.. T'. The resul ts show that ep detectors with the response time of few picosecond at nitrogen temperature can be realized.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Gorzkowski, W.; Gutowski, M.; Reich, A.; Szymczak, H.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference European Conference , Ustroń, Poland , 30 Sept – 4 Oct 1989  
  Notes Approved no  
  Call Number Serial 1695  
Permanent link to this record
 

 
Author Yagoubov, P.; Gol'tsman, G.; Voronov, B.; Svechnikov, S.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekström, H.; Semenov, A.; Gousev, Yu.; Renk, K. url  openurl
  Title Quasioptical phonon-cooled NbN hot-electron bolometer mixer at THz frequencies Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 303-317  
  Keywords NbN HEB mixers  
  Abstract In our experiments we tested phonon-cooled hot-electron bolometer (HEB) quasioptical mixer based on spiral antenna designed for 0.5-1.2 THz frequency band and fabricated on sapphire, Si-coated sapphire and high resistivity silicon substrates. HEB devices were produced from thin superconducting NbN film 3.5-6 nm thick with the critical temperature of about 11-12 K. For these devices we achieved the receiver noise temperature T R (DSB) = 3000 K in the 500-700 GHz frequency range and an IF bandwidth of 3-4 GHz. Prelimanary measurements at frequencies 1-1.2 THz resulted the receiver noise temperature about 9000 K (DSB).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1614  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: