toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A. D.; Gol’tsman, G. N. url  openurl
  Title 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 112  
  Keywords NbN HEB mixers  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. Measurements of the mixers sensitivity and the input RF band are presented, and compared against calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1419  
Permanent link to this record
 

 
Author Gol’tsman, G. N. url  openurl
  Title The “Millimetron” project, a future space telescope mission Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 255  
  Keywords Millimetron space observatory, VLBI  
  Abstract The goal of the Millimetron project is to develop a space observatory operating in the millimeter, sub-millimeter and infrared wavelength ranges using a 12-m actively cooled telescope in a single-dish mode and as an interferometer with the space-ground and space-space baselines (the later after the launch of the second identical space telescope). The Millimetron’s main reflector and other optics will be cooled down to 4K thus enabling astronomical observations with super high sensitivity in MM and subMM (down to nanoJansky level). Heterodyne observations in an interferometer mode at frequencies 0.1-1 THz will provide super high angular resolution. The main instruments, planned to be installed are wide-range imaging arrays, radiometers with spectrometers and polarimeters, VLBI heterodyne receivers, and Mikelson type interferometer devices. Wide-range MM and subMM imaging arrays and spectrometers will be based on a superconducting hot electron direct detectors with Andreev mirrors operating at 0.1 K. Such detectors are the best candidates to reach the noise equivalent power level of 10 -19 -10 -20 W/√Hz. Heterodyne receivers will be both SIS based superconducting integrated receiver with flux-flow oscillator as LO (0.1-0.9 THz range) and HEB based receivers using multiplied Gunn oscillator as LO for 1-2 THz range and quantum cascade lasers as LO for 2-5 THz range. For observations in middle IR region there will be installed large arrays of superconducting single photon detectors, providing imaging with very high dynamic range and ultimate sensitivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1422  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal (down) Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 686-687  
  Keywords IR NbN HEB mixer, detector, GaAs substrate  
  Abstract The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 4023440 Serial 1297  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal (down) Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 688-689  
  Keywords NbN HEB mixers  
  Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1445  
Permanent link to this record
 

 
Author Zhang, J.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R.; Wilsher, K.; Lo, W.; Okunev, O.; Korneev, A.; Kouminov, P.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title A superconducting single-photon detector for CMOS IC probing Type Conference Article
  Year 2003 Publication Proc. 16-th LEOS Abbreviated Journal (down) Proc. 16-th LEOS  
  Volume 2 Issue Pages 602-603  
  Keywords NbN SSPD, SNSPD  
  Abstract In this paper, a novel, time-resolved, NbN-based, superconducting single-photon detector (SSPD) has been developed for probing CMOS integrated circuits (ICs) using photon emission timing analysis (PETA).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003.  
  Notes Approved no  
  Call Number Serial 1510  
Permanent link to this record
 

 
Author Ryabchun, S.; Korneev, A.; Matvienko, V.; Smirnov, K.; Kouminov, P.; Seleznev, V.; Kaurova, N.; Voronov, B.; Gol’tsman, G. N. url  openurl
  Title Superconducting single photon detectors array based on hot electron phenomena Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 242-247  
  Keywords NbN SSPD arrays, SNSPD  
  Abstract In this paper we propose to use time domain multiplexing for large format arrays of superconducting single photon detectors (SSPDs) of the terahertz, visible and infrared frequency ranges based on ultrathin superconducting NbN films. Effective realization of time domain multiplexing for SSPD arrays is possible due to a short electric pulse of the SSPD as response to radiation quantum absorption, picosecond jitter and extremely low noise equivalent power (NEP). We present experimental results of testing 2×2 arrays in the infrared waveband. The measured noise equivalent power in the infrared and expected for the terahertz waveband is 10 – 21 WHz -1/2 . The best quantum efficiency (QE) of SSPD is 50% at 1.3 µm wavelength.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1493  
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N. url  openurl
  Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 462-468  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1539  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal (down) Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal (down) Phys. Rev. B  
  Volume 67 Issue 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1519  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Semenov, A. D.; Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gershenzon, E. M. url  doi
openurl 
  Title Electron-phonon interaction in thin YBaCuO films and fast detectors Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal (down) Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue Pages 184-185  
  Keywords YBCO HTS detectors  
  Abstract The thin. YBaCuO film response to laser and submillimeter radiation demonstrates the picosecond nonequilibrium peak on the nanosecond bolometric background. Experimental data give an evidence for the spectral dependence of picosecond photoresponse probably due to a poor efficiency of electron multiplication processes. Presented results prove an availability of fast YBaCuO thin film detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1662  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: