toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Khosropanah, Pourya openurl 
  Title NbN and NbTiN hot electron bolometer THz mixers Type Book Whole
  Year 2003 Publication Chalmers University of Technology Abbreviated Journal (down)  
  Volume Issue Pages  
  Keywords HEB mixer, hot electron bolometer mixer, NbN, NbTiN, superconducting detector, heterodyne receiver, THz mixer, submillimeter mixer, quasioptical receiver, double slot antenna, twin slot antenna, spiral antenna, receiver noise, FTS, Fourier Transform Spectrometer  
  Abstract The thesis reports the development of Hot Electron Bolometer (HEB) mixers for radio astronomy heterodyne receivers in THz frequency range. Part of this work is the fabrication of HEB devices, which are based on NbN or NbTiN superconducting thin films (â‰<a4>5 nm). They are integrated with wideband spiral or double-slot planar antennas. The mixer chips are incorporated into a quasi-optical receiver. The experimental part of this work focuses on the characterization of the receiver as a whole, and the HEB mixers as a part. Double side band receiver noise temperature and the IF bandwidth are reported for frequencies from 0.7 THz up to 2.6 THz. The spectrum of the direct response of HEB integrated with dierent antennas are measured using Fourier Transform Spectrometer (FTS). The effect of the bolometer size on total receiver performance and the LO power requirements is also discussed. A high-yield and reliable process for fabrication of NbN HEB mixers have been achieved. Over 100 devices with different bolometer geometry, film property and also different antennas have been fabricated and measured. The measured data enables us to discuss the impact of different parameters to the receiver overall performance.

This work has provided NbN HEB mixers to the following receivers:

TREND (Terahertz REceiver with NbN HEB Device) operating at 1.25-1.5 THz, installed in AST/RO Submillimeter Wave Telescope, Amundsen/Scott South Pole Station, in 2002-2003.

Band 6-low (1.410-1.700 THz) and 6-high (1.700-1.920 THz) of the HIFI (Heterodyne Instrument for Far Infra-red) in the Herschel Space Observatory, due to launch in 2007 by ESA (European Space Agency).

Besides, there has been continuous efforts to develop better models to explain the mixer performance more accurately. They are based on two temperature model for electrons and phonons and solving one-dimensional heat balance equations along the bolometer. The principles of these models are illustrated and the calculated results are compared with measured data.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Chalmers University of Technology Place of Publication Göteborg Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 910  
Permanent link to this record
 

 
Author Tret'yakov, I. V.; Kaurova, N. S.; Voronov, B. M.; Anfert'ev, V. A.; Revin, L. S.; Vaks, V. L.; Gol'tsman, G. N. doi  openurl
  Title The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range Type Journal Article
  Year 2016 Publication Tech. Phys. Lett. Abbreviated Journal (down)  
  Volume 42 Issue 6 Pages 563-566  
  Keywords HEB, noise bandwidth, conversion gain bandwidth, noise temperature, Andreev reflection  
  Abstract Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at Tb â‰<aa> Tc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1106  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: