toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cherednichenko, S.; Rönnung, F.; Gol’tsman, G.; Kollberg, E.; Winkler, D. url  openurl
  Title YBa2Cu3O7-δ hot-electron bolometer mixer at 0.6 THz Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 517-522  
  Keywords YBCO HTS HEB mixers  
  Abstract We present an investigation of hot-electron bolometric mixer based on a YBa 2 Cu 3 O 7-δ (YBCO) superconducting thin film. Mixer conversion loss of –46 dB, absorbed local oscillator power and intermediate frequency bandwidth were measured at the local oscillator frequency 0.6 THz. The fabrication technique for nanoscale YBCO hot-electron bolometer (HEB) mixer integrated with a planar antenna structure is described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1556  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Yagoubov, P.; Merkel, H.; Kollberg, E.; Yngvesson, K. S.; Voronov, B.; Gol’tsman, G. url  openurl
  Title IF bandwidth of phonon cooled HEB mixers made from NbN films on MgO substrates Type Conference Article
  Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 11th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 219-227  
  Keywords NbN HEB mixers, cinversion gain bandwidth, IF bandwidth  
  Abstract An investigation of gain and noise bandwidth of phonon-cooled hot-electron bolometric (HEB) mixers is presented. The radiation coupling to the mixers is quasioptical through either a spiral or twin-slot antenna. A maximum gain bandwidth of 4.8 GHz is obtained for mixers based on a 3.5 nm thin NbN film with Tc= 10 K. The noise bandwidth is 5.6 GHz, at the moment limited by parasitic elements in the, device mount fixture. At 0.65 THz the DSB receiver noise temperature is 700-800 К in the IF band 1-2 GHz, and 1150-2700 К in the band 3.5-7 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1557  
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N. url  openurl
  Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 462-468  
  Keywords NbN SSPD, SNSPD  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1539  
Permanent link to this record
 

 
Author Gol'tsman, Gregory; Semenov, Alexei; Smirnov, Konstantin; Voronov, Boris url  openurl
  Title Background limited quantum superconducting detector for submillimeter wavelengths Type Conference Article
  Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 12th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 469-475  
  Keywords Ti SQD, SQUID readout  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1540  
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Slysz, W.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smimov, K.; Gol'tsman, G. N. url  openurl
  Title Spectral sensitivity and temporal resolution of NbN superconducting single-photon detectors Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 105-111  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on spectral sensitivity and time resolution of superconducting NbN thin film single-photon detectors (SPDs). Our SPDs exhibit an everimentally measured detection efficiencies (DE) from — 0.2% at 2=1550 nm up to —3% at lambda=405 nm wavelength for 10-nm film thickness devices and up to 3.5% at lambda=1550 nm for 3.5-nm film thickness devices. Spectral dependences of detection efficiency (DE) at 2=0.4 —3.0 pm range are presented. With variable optical delay setup, it is shown that NbN SPD potentially can resolve optical pulses with the repetition rate up to 10 GHz at least. The observed full width at the half maximum (FWHM) of the signal pulse is about 150-180 ps, limited by read-out electronics. The jitter of NbN SPD is measured to be —35 ps at optimum biasing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1528  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: