toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Raussendorf, Robert openurl 
  Title Quantum computing: Shaking up ground states Type Journal Article
  Year 2010 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 6 Issue 11 Pages 840-841  
  Keywords fromIPMRAS  
  Abstract Measurement-based quantum computation with an Affleck-Kennedy-Lieb-Tasaki state is experimentally realized for the first time.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 834  
Permanent link to this record
 

 
Author Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J. M.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P. J.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A. openurl 
  Title Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue 2 Pages 154-158  
  Keywords fromIPMRAS  
  Abstract At optical frequencies the radiation produced by a source, such as a laser, a black body or a single-photon emitter, is frequently characterized by analysing the temporal correlations of emitted photons using single-photon counters. At microwave frequencies, however, there are no efficient single-photon counters yet. Instead, well-developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate first- and second-order correlation function measurements of a pulsed microwave-frequency single-photon source integrated on the same chip with a 50/50 beam splitter followed by linear amplifiers and quadrature amplitude detectors. We clearly observe single-photon coherence in first-order and photon antibunching in second-order correlation function measurements of the propagating fields.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 835  
Permanent link to this record
 

 
Author Kumar, Sushil; Wang I. Chan, Chun; Hu, Qing; Reno, John L. openurl 
  Title A 1.8-THz quantum cascade laser operating significantly above the temperature of ω/kB Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue Pages  
  Keywords fromIPMRAS  
  Abstract Several competing technologies continue to advance the field of terahertz science; of particular importance has been the development of a terahertz semiconductor quantum cascade laser (QCL), which is arguably the only solid-state terahertz source with average optical power levels of much greater than a milliwatt. Terahertz QCLs are required to be cryogenically cooled and improvement of their temperature performance is the single most important research goal in the field. Thus far, their maximum operating temperature has been empirically limited to ~ω/kB, a largely inexplicable trend that has bred speculation that a room-temperature terahertz QCL may not be possible in materials used at present. Here, we argue that this behaviour is an indirect consequence of the resonant-tunnelling injection mechanism employed in all previously reported terahertz QCLs. We demonstrate a new scattering-assisted injection scheme to surpass this limit for a 1.8-THz QCL that operates up to ~1.9ω/kB (163 K). Peak optical power in excess of 2 mW was detected from the laser at 155 K. This development should make QCL technology attractive for applications below 2 THz, and initiate new design strategies for realizing a room-temperature terahertz semiconductor laser.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 836  
Permanent link to this record
 

 
Author Buchanan, Mark openurl 
  Title Body of evidence Type Manuscript
  Year 2010 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 6 Issue Pages  
  Keywords fromIPMRAS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 837  
Permanent link to this record
 

 
Author Mariantoni, Matteo; Wang, H.; Bialczak, Radoslaw C.; Lenander, M.; Lucero, Erik; Neeley, M.; O'Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yamamoto, T.; Yin, Y.; Zhao, J.; Martinis, John M.; Cleland, A. N. openurl 
  Title Photon shell game in three-resonator circuit quantum electrodynamics Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue 4 Pages 287-293  
  Keywords fromIPMRAS  
  Abstract The generation and control of quantum states of light constitute fundamental tasks in cavity quantum electrodynamics (QED). The superconducting realization of cavity QED, circuit QED (refs 11, 12, 13, 14), enables on-chip microwave photonics, where superconducting qubits control and measure individual photon states. A long-standing issue in cavity QED is the coherent transfer of photons between two or more resonators. Here, we use circuit QED to implement a three-resonator architecture on a single chip, where the resonators are interconnected by two superconducting phase qubits. We use this circuit to shuffle one- and two-photon Fock states between the three resonators, and demonstrate qubit-mediated vacuum Rabi swaps between two resonators. By shuffling superposition states we are also able to demonstrate the high-fidelity phase coherence of the transfer. Our results illustrate the potential for using multi-resonator circuits as photon quantum registers and for creating multipartite entanglement between delocalized bosonic modes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 838  
Permanent link to this record
 

 
Author Buchanan, Mark openurl 
  Title Nothing's impossible Type Manuscript
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue Pages 5  
  Keywords fromIPMRAS  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 839  
Permanent link to this record
 

 
Author Lupascu, Adrian openurl 
  Title Nonlinear dynamics: Quantum pendula locked in Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue 2 Pages 100-101  
  Keywords fromIPMRAS  
  Abstract A study of the autoresonant behaviour of a superconducting pendulum reveals that quantum fluctuations determine only the initial oscillator motion and not its subsequent dynamics. This could be important in the development of more efficient methods for reading solid-state qubits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 840  
Permanent link to this record
 

 
Author Nevou, L.; Liverini, V.; Friedli, P.; Castellano, F.; Bismuto, A.; Sigg, H.; Gramm, F.; Müller, E.; Faist, J. openurl 
  Title Current quantization in an optically driven electron pump based on self-assembled quantum dots Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue Pages 423–427  
  Keywords fromIPMRAS  
  Abstract The electronic structure of self-assembled semiconductor quantum dots consists of discrete atom-like states that can be populated with a well-defined number of electrons. This property can be used to fabricate a d.c. current standard that enables the unit of ampere to be independently defined. Here we report an optically pumped current source based on self-assembled InAs/GaAs quantum dots. The accuracy obtained so far is 10–1 and is limited by the uncertainty in the number of dots. At 10 K the device generates a current difference of 2.39 nA at a frequency of 1 kHz. The accuracy could be improved by site-selective growth techniques where the number of dots is fixed by pre-patterning. The results are promising for applications in electrical metrology, where a current standard is needed to close the so-called quantum metrological triangle.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 841  
Permanent link to this record
 

 
Author Ma, Xiao-Song; Dakic, Borivoje; Naylor, William; Zeilinger, Anton; Walther, Philip openurl 
  Title Quantum simulation of the wavefunction to probe frustrated Heisenberg spin systems Type Journal Article
  Year 2011 Publication Nature Physics Abbreviated Journal (down) Nat. Phys.  
  Volume 7 Issue 5 Pages 399-405  
  Keywords fromIPMRAS  
  Abstract Quantum simulators are controllable quantum systems that can reproduce the dynamics of the system of interest in situations that are not amenable to classical computers. Recent developments in quantum technology enable the precise control of individual quantum particles as required for studying complex quantum systems. In particular, quantum simulators capable of simulating frustrated Heisenberg spin systems provide platforms for understanding exotic matter such as high-temperature superconductors. Here we report the analogue quantum simulation of the ground-state wavefunction to probe arbitrary Heisenberg-type interactions among four spin-1/2 particles. Depending on the interaction strength, frustration within the system emerges such that the ground state evolves from a localized to a resonating-valence-bond state. This spin-1/2 tetramer is created using the polarization states of four photons. The single-particle addressability and tunable measurement-induced interactions provide us with insights into entanglement dynamics among individual particles. We directly extract ground-state energies and pairwise quantum correlations to observe the monogamy of entanglement.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 842  
Permanent link to this record
 

 
Author Takesue, Hiroki; Nam, Sae Woo; Zhang, Qiang; Hadfield, Robert H.; Honjo, Toshimori; Tamaki, Kiyoshi; Yamamoto, Yoshihisa doi  openurl
  Title Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors Type Journal Article
  Year 2007 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 1 Issue Pages 343-348  
  Keywords quantum cryptography, SSPD, QKD, DSP  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 609  
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim openurl 
  Title Hacking commercial quantum cryptography systems by tailored bright illumination Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 4 Issue 10 Pages 686 - 689  
  Keywords quantum cryptography, hacking, QKD, APD  
  Abstract The peculiar properties of quantum mechanics allow two remote parties to communicate a private, secret key, which is protected from eavesdropping by the laws of physics. So-called quantum key distribution (QKD) implementations always rely on detectors to measure the relevant quantum property of single photons. Here we demonstrate experimentally that the detectors in two commercially available QKD systems can be fully remote-controlled using specially tailored bright illumination. This makes it possible to tracelessly acquire the full secret key; we propose an eavesdropping apparatus built of off-the-shelf components. The loophole is likely to be present in most QKD systems using avalanche photodiodes to detect single photons. We believe that our findings are crucial for strengthening the security of practical QKD, by identifying and patching technological deficiencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 657  
Permanent link to this record
 

 
Author Schwarz, Brent openurl 
  Title Lidar: Mapping the world in 3D Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 4 Issue 7 Pages 429-430  
  Keywords LIDAR  
  Abstract A high-definition LIDAR system with a rotating sensor head containing 64 semiconductor lasers allows the efficient generation of 3D environment maps at unprecedented levels of detail.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 696  
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F. openurl 
  Title Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 4 Issue Pages 312 - 315  
  Keywords optical antennas  
  Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 747  
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek openurl 
  Title Antennas for light Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 5 Issue 2 Pages 83-90  
  Keywords optical antennas  
  Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 748  
Permanent link to this record
 

 
Author Brida, G.; Genovese, M.; Ruo Berchera, I. openurl 
  Title Experimental realization of sub-shot-noise quantum imaging Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal (down) Nat. Photon.  
  Volume 4 Issue 4 Pages 227-230  
  Keywords fromIPMRAS  
  Abstract The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light . In particular, quantum correlations between twin beams represent a fundamental resource for these studies. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 771  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: