toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gol’tsman, G. N.; Semenov, A. D.; Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gershenzon, E. M. url  doi
openurl 
  Title Electron-phonon interaction in thin YBaCuO films and fast detectors Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal (up) Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue Pages 184-185  
  Keywords YBCO HTS detectors  
  Abstract The thin. YBaCuO film response to laser and submillimeter radiation demonstrates the picosecond nonequilibrium peak on the nanosecond bolometric background. Experimental data give an evidence for the spectral dependence of picosecond photoresponse probably due to a poor efficiency of electron multiplication processes. Presented results prove an availability of fast YBaCuO thin film detector.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1662  
Permanent link to this record
 

 
Author Heusinger, M. A.; Nebosis,R. S.; Schatz, W.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Temperature dependence of bolometric and non-bolometric photoresponse of a structured YBa2Cu3O7-δ thin film Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal (up) Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue Pages 193-195  
  Keywords YBCO HTS detectors  
  Abstract We investigated the temperature dependence of the transient voltage photoresponse of a current biased structured YBa2Cu3O7−δ thin film in its transition temperature region, around 79 K. Both, picosecond nonbolometric and nanosecond bolometric response to ultrashort far-infrared laser pulses were found for frequencies between 25 cm−1 and 215 cm−1. We will discuss optimum conditions for radiation detection and present an analysis of the dynamical behaviour of excited high T c thin films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1663  
Permanent link to this record
 

 
Author Sergeev, A. V.; Aksaev, E. E.; Gogidze, I. G.; Gol’tsman, G. N.; Semenov, A. D.; Gershenzon, E. M. url  doi
openurl 
  Title Thermal boundary resistance at YBaCuO film-substrate interface Type Conference Article
  Year 1993 Publication Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences Abbreviated Journal (up) Phonon Scattering in Condensed Matter VII. Springer Series in Solid-State Sciences  
  Volume 112 Issue Pages 405-406  
  Keywords YBCO films  
  Abstract The nanosecond voltage response of YBaCuo films on Al2O3, MgO and ZrO2 substrates to electromagnetic radiation of millimeter and visible ranges has been investigated. The analysis of experimental conditions for Al2O3 and MgO substrates shows that the resistance change is monitored by the Kapitza boundary shift of temperature during the temporal interval ~ 100 ns limited by the time of phonon return from a substrate into a film. The observed exponential voltage decay is described by the phonon escape time which is proportional to the film thickness and is weakly temperature dependent.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Meissner, M.; Pohl, R. O.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Seventh International Conference, Cornell University, Ithaca, New York, August 3-7, 1992  
  Notes Approved no  
  Call Number Serial 1665  
Permanent link to this record
 

 
Author Zhang, J.; Słysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.; Okunev, O.; Chulkova, G.; Gol’tsman, G. N. url  doi
openurl 
  Title Time delay of resistive-state formation in superconducting stripes excited by single optical photons Type Journal Article
  Year 2003 Publication Phys. Rev. B Abbreviated Journal (up) Phys. Rev. B  
  Volume 67 Issue 13 Pages 132508 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract We have observed a 65(±5)-ps time delay in the onset of a resistive-state formation in 10-nm-thick, 130-nm-wide NbN superconducting stripes exposed to single photons. The delay in the photoresponse decreased to zero when the stripe was irradiated by multi-photon (classical) optical pulses. Our NbN structures were kept at 4.2 K, well below the material’s critical temperature, and were illuminated by 100-fs-wide optical pulses. The time-delay phenomenon has been explained within the framework of a model based on photon-induced generation of a hotspot in the superconducting stripe and subsequent, supercurrent-assisted, resistive-state formation across the entire stripe cross section. The measured time delays in both the single-photon and two-photon detection regimes agree well with theoretical predictions of the resistive-state dynamics in one-dimensional superconducting stripes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1519  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal (up) Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: