toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Peltonen, J. T.; Peng, Z. H.; Korneeva, Yu. P.; Voronov, B. M.; Korneev, A. A.; Semenov, A. V.; Gol'tsman, G. N.; Tsai, J. S; Astafiev, Oleg doi  openurl
  Title Coherent dynamics and decoherence in a superconducting weak link Type Journal Article
  Year 2016 Publication Physic. Rev. B, Abbreviated Journal (down) Physic. Rev. B,  
  Volume 94 Issue Pages 180508  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 1123  
Permanent link to this record
 

 
Author Sergeev, A. V.; Semenov, A. D.; Kouminov, P.; Trifonov, V.; Goghidze, I. G.; Karasik, B. S.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Transparency of a YBa2Cu3O7-film/substrate interface for thermal phonons measured by means of voltage response to radiation Type Journal Article
  Year 1994 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal (down) Phys. Rev. B Condens. Matter.  
  Volume 49 Issue 13 Pages 9091-9096  
  Keywords YBCO films  
  Abstract The transparency of a film/substrate interface for thermal phonons was investigated for YBa2Cu3O7 thin films deposited on MgO, Al2O3, LaAlO3, NdGaO3, and ZrO2 substrates. Both voltage response to pulsed-visible and to continuously modulated far-infrared radiation show two regimes of heat escape from the film to the substrate. That one dominated by the thermal boundary resistance at the film/substrate interface provides an initial exponential decay of the response. The other one prevailing at longer times or smaller modulation frequencies causes much slower decay and is governed by phonon diffusion in the substrate. The transparency of the boundary for phonons incident from the film on the substrate and also from the substrate on the film was determined separately from the characteristic time of the exponential decay and from the time at which one regime was changed to the other. Taking into account the specific heat of optical phonons and the temperature dependence of the group velocity of acoustic phonons, we show that the body of experimental data agrees with acoustic mismatch theory rather than with the model that assumes strong diffusive scattering of phonons at the interface.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10009690 Approved no  
  Call Number Serial 1648  
Permanent link to this record
 

 
Author Semenov, A. D.; Nebosis, R. S.; Gousev, Yu. P.; Heusinger, M. A.; Renk, K. F. openurl 
  Title Analysis of the nonequilibrium photoresponse of superconducting films to pulsed radiation by use of a two-temperature model Type Journal Article
  Year 1995 Publication Phys. Rev. B Abbreviated Journal (down) Phys. Rev. B  
  Volume 52 Issue 1 Pages 581-590  
  Keywords HEB, NbN phonon scecific heat, Cp  
  Abstract Photoresponse of a superconducting film in the resistive state to pulsed radiation has been studied in the framework of a model assuming that two different effective temperatures can be assigned to the quasiparticle and phonon nonequilibrium distributions. The coupled electron-phonon-substrate system is described by a system of time-dependent energy-balance differential equations for effective temperatures. An analytical solution of the system is given and calculated voltage transients are compared with experimental photoresponse signals taking into account the radiation pulse shape and the time resolution of the readout electronics. It is supposed that a resistive state (vortices, fluxons, network of intergrain junctions, hot spots, phase slip centers) provides an ultrafast connection between electron temperature changes and changes of the film resistance and thus plays a minor role in the temporal evolution of the response. In accordance with experimental observations a two-component response was revealed from simulations. The slower component corresponds to a bolometric mechanism while the fast component is connected with the relaxation of the electron temperature. Calculated photoresponse transients are presented for different ratios of the electron and phonon specific heat, radiation pulse durations and fluences, and frequency band passes of registration electronics. From the amplitude of the bolometric component we determine the radiation energy absorbed in a film. This enables us to reveal an intrinsic electron-phonon scattering time even if it is much shorter than the time resolution of readout electronics. We analyze experimental voltage transients for NbN, YBa2Cu3O7, and TlBa2Ca2Cu3O9 superconducting films and find the electron-phonon interaction times at the transition temperatures of 17, 2.5, and 1.8 ps, respectively. The values are in reasonable agreement with data of other experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 903  
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E. url  doi
openurl 
  Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
  Year 2016 Publication Phys. Rev. B Abbreviated Journal (down) Phys. Rev. B  
  Volume 93 Issue 6 Pages 064506  
  Keywords boron-doped diamond films, resistive superconducting state, relaxation time  
  Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1167  
Permanent link to this record
 

 
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Chulkova, G. M.; Goltsman, G. N. url  doi
openurl 
  Title Nonbolometric bottleneck in electron-phonon relaxation in ultrathin WSi films Type Journal Article
  Year 2018 Publication Phys. Rev. B Abbreviated Journal (down) Phys. Rev. B  
  Volume 97 Issue 18 Pages 184512 (1 to 13)  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in τe−ph∼140–190 ps at TC=3.4K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1305  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: