toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semenov, Alexei D.; Hiibers, Heinz-Wilhelm; Richter, Heiko; Smirnov, Konstantin; Gol'tsman, Gregory N.; Kaurova, Natalia; Voronov, Boris M. url  openurl
  Title Superconducting hot-electron bolometer mixer for terahertz heterodyne receivers Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 33-40  
  Keywords NbN HEB mixers  
  Abstract A number of on-going astronomical and atmospheric research programs are aimed to the Terahertz (THz) spectral region. At frequencies above about 1.4 THz heterodyne receivers planned for these missions will use superconducting hot-electron bolometers as a mixers. We present recent results of the terahertz antenna development of superconducting NbN hot-electron bolometer mixer for GREAT (German Receiver for Astronomy at Terahertz Frequencies, to be used aboard of SOFIA) and TELIS (Terahertz Limb Sounder). The mixer is incorporated into hybrid antenna consisting of a planar feed antenna, which has either logarithmic spiral or double-slot configuration, and hyper hemispherical silicon lens. The hybrid antenna showed almost frequency independent and symmetric radiation pattern with the beam-width slightly broader than expected for diffraction limited antenna. The noise temperature as well as its spectral dependence changes with the bolometer sizes that provides additional tool for mixer optimization. FTS spectra measured in the direct detection regime agreed with the noise temperature spectra.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1498  
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W. url  openurl
  Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 405-412  
  Keywords NbN HEB mixers  
  Abstract Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1502  
Permanent link to this record
 

 
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, Sergey I.; Vakhtomin, Yury B.; Antipov, Sergey V.; Voronov, Boris M.; Kaurova, Natalia S.; Gol'tsman, Gregory N. url  openurl
  Title Characterization of quasi-optical NbN phonon-cooled superconducting HEB mixers Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal (up) Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 55-58  
  Keywords NbN HEB mixers  
  Abstract In this paper, we thoroughly investigate the performance of quasi-optical NbN phonon-cooled superconducting hot-electron bolometer (HEB) mixers, cryogenically cooled by a close-cycled 4-K refrigerator at 500 GI-1z and 850 GHz. The uncorrected lowest receiver noise Abstract---In temperatures measured are 800 K at 500 CHz without anti-reflection coating, and 1000 K @ 850 GHz with a 50 11M thick Mylar anti-reflection coating. The dependence of receiver noise temperature on the critical current and bath temperature of HEB mixer is also investigated here. Lifetime of quasi-optical superconducting NbN HEB mixers of different volumes, room temperature resistances, and critical temperatures are thoroughly studied. Increased room temperature resistance with time over the initial resistance changes between 1 and 1.2, and the reduced critical current with time over the initial value fluctuates slightly around 0.7 for most HEB mixers even of different volumes, room temperature resistances, and critical temperatures. The critical current degrades sharply vvhile room temperature resistance varies over 1.25.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1435  
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P. url  openurl
  Title Terahertz imaging system based on superconducting integrated receiver Type Conference Article
  Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal (up) Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications  
  Volume Issue Pages 20-22  
  Keywords SIS mixer, SIR  
  Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number ozhegov2010terahertz Serial 1397  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: