|   | 
Details
   web
Records
Author Gol'tsman, G. N.; Elant'iev, A. I.; Karasik, B. S.; Gershenzon, E. M.
Title Antenna – coupled superconducting electron-heating bolometer Type Conference Article
Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal (down) Proc. 4th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 623-628
Keywords HEB
Abstract We propose a novel antenna-coupled superconducting bolometer based on electron-heating in the resistive state. A short narrow ultrathin super- conducting film strip (sized approximately 4x1x0.01 pm 3 ), which is in good thermal contact with the thermostat, serves as a resistive load for infrared or submillimeter current. In contrast to conventional isothermal super- conducting bolometers electron-heating ones can have a higher sensitivity which grows when filni. thickness is reduced. Response time of electron- heating bolometer does not depend on heat transfer from the film to the enviroment. To calculate the sensitivity (NEP), we have used experimental data on wideband Al, Nb and NbN bolometers which have the same un- derlying physical mechanism. The bolom.eters have been made in the form of a structure composed of a number of long narrow strips. The values of for Al, NEP have been found to be 1.5 . 113 -16 1 140 -15 ) and 2 . 10 – 14werT,-1/2 – Nb and NbN respectively. In the paper, the prospects are also discussed of improving the picosecond YBaCuO detector, developed recently. NEP value of the detector, if combined with a microantenna, can reach the order of 10- •ilz-v2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1657
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal (down) Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 47-50
Keywords NbN HEB mixers
Abstract
Address Charlottesville, Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1601
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Yngvesson, K. S.
Title Hot electron bolometer detectors and mixers based on a superconducting-two-dimensional electron gas-superconductor structure Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal (down) Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 163-166
Keywords S-2DEG-S HEB mixers, detectors, AlGaAs/GaAs heterostructures, NbN
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1603
Permanent link to this record
 

 
Author Ekström, H.; Kroug, M.; Belitsky, V.; Kollberg, E.; Olsson, H.; Goltsman, G.; Gershenzon, E.; Yagoubov, P.; Voronov, B.; Yngvesson, S.
Title Hot electron mixers for THz applications Type Conference Article
Year 1996 Publication Proc. 30th ESLAB Abbreviated Journal (down) Proc. 30th ESLAB
Volume Issue Pages 207-210
Keywords NbN HEB mixers
Abstract We have measured the noise performance of 35 A thin NbN HEB devices integrated with spiral antennas on antireflection coated silicon substrate lenses at 620 GHz. From the noise measurements we have determined a total conversion gain of the receiver of—16 dB, and an intrinsic conversion of about-10 dB. The IF bandwidth of the 35 A thick NbN devices is at least 3 GHz. The DSB receiver noise temperature is less than 1450 K. Without mismatch losses, which is possible to obtain with a shorter device, and with reduced loss from the beamsplitter, we expect to achieve a DSB receiver noise temperature of less ‘than 700 K.
Address Noordwijk, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor Rolfe, E. J.; Pilbratt, G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Submillimetre and Far-Infrared Space Instrumentation
Notes Approved no
Call Number Serial 1606
Permanent link to this record
 

 
Author Merkel, H. F.; Yagoubov, P. A.; Kroug, M.; Khosropanah, P.; Kollberg, E. L.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Noise temperature and absorbed LO power measurement methods for NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 28th European Microwave Conf. Abbreviated Journal (down) Proc. 28th European Microwave Conf.
Volume 1 Issue Pages 294-299
Keywords NbN HEB mixers
Abstract In this paper the absorbed LO power requirements and the noise performance of NbN based phonon-cooled hot electron bolometric (HEB) quasioptical mixers are investigated for RF frequencies in the 0.55-1.1 range The minimal measured DSB noise temperatures are about 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The increase in noise temperature at 1.1THz is attributed to water absorption. The absorbed LO power is measured using a calorimetric approach. The results are subsequently corrected for lattice heating. These values are compared to results of a novel one dimensional hot spot mixer models and to a more traditional isotherm method which tends to underestimate the absorbed LO power for small bias powers. Typically a LO power between 50nW and 100nW is needed to pump the device to the optimal operating point.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 28th European Microwave Conference
Notes Approved no
Call Number Serial 1580
Permanent link to this record