|   | 
Details
   web
Records
Author Torgashin, Mikhail Yu.; Koshelets, Valery P.; Dmitriev, Pavel N.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Yagoubov, Pavel A.
Title Superconducting Integrated Receiver Based on Nb-AlN-NbN-Nb Circuits Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (down)
Volume 17 Issue 2 Pages 379-382
Keywords SIR
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 525
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Yang, Z. Q.; Baselmans, J. J. A.; Khosropanah, P.; Barends, R.; Klapwijk, T. M.
Title Terahertz superconducting hot electron bolometer heterodyne receivers Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (down)
Volume 17 Issue 2 Pages 252-258
Keywords HEB, mixer, direct detection effect
Abstract We highlight the progress on NbN hot electron bolometer (HEB) mixers achieved through fruitful collaboration between SRON Netherlands Institute for Space Research and Delft University of Technology, the Netherlands. This includes the best receiver noise temperatures of 700 K at 1.63 THz using a twin-slot antenna mixer and 1050 K at 2.84 THz using a spiral antenna coupled HEB mixer. The mixers are based on thin NbN films on Si and fabricated with a new contact-process and-structure. By reducing their areas HEB mixers have shown an LO power requirement as low as 30 nW. Those small HEB mixers have demonstrated equivalent sensitivity as those with large areas provided the direct detection effect due to broadband radiation is removed. To manifest that a HEB based heterodyne receiver can in practice be used at arbitrary frequencies above 2 THz, we demonstrate a 2.8 THz receiver using a THz quantum cascade laser (QCL) as local oscillator.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ asmirn @ Serial 557
Permanent link to this record
 

 
Author Yang, J. K. W.; Kerman, A. J.; Dauler, E. A.; Anant, V.; Rosfjord, K. M.; Berggren, K. K.
Title Modeling the electrical and thermal response of superconducting nanowire single-photon detectors Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (down)
Volume 17 Issue 2 Pages 581 - 585
Keywords SSPD, modeling
Abstract We modeled the response of superconducting nanowire single-photon detectors during a photodetection event, taking into consideration only the thermal and electrical properties of a superconducting NbN nanowire on a sapphire substrate. Our calculations suggest that heating which occurs after the formation of a photo-induced resistive barrier is responsible for the generation of a measurable voltage pulse. We compared this numerical result with experimental data of a voltage pulse from a slow device, i.e. large kinetic inductance, and obtained a good fit. Using this electro-thermal model, we estimated the temperature rise and the resistance buildup in the nanowire, and the return current at which the nanowire becomes superconducting again. We also show that the reset time of these photodetectors can be decreased by the addition of a series resistance and provide supporting experimental data. Finally we present preliminary results on a detector latching behavior that can also be explained using the electro-thermal model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 625
Permanent link to this record
 

 
Author Xiaolong Hu; Holzwarth, C.W.; Masciarelli, D.; Dauler, E.A.; Berggren, K.K.
Title Efficiently coupling light to superconducting nanowire single-photon detectors Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (down)
Volume 19 Issue 3 Pages 336-340
Keywords optical antennas; SNSPD
Abstract We designed superconducting nanowire single-photon detectors (SNSPDs) integrated with silver optical antennae for free-space coupling and a dielectric waveguide for fiber coupling. According to our finite-element simulation, (1) for the free-space coupling, the absorptance of the NbN nanowire for TM-polarized photons at the wavelength of 1550 nm can be as high as 96% by adding silver optical antennae; (2) for the fiber coupling, the absorptance of the NbN nanowire for TE-like-polarized photons can reach 76% including coupling efficiency at the wavelength of 1550 nm by adding a silicon nitride waveguide and an inverse-taper coupler.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 647
Permanent link to this record
 

 
Author Yamashita, Taro; Miki, Shigehito; Qiu, Wei; Fujiwara, Mikio; Sasaki, Masahide; Wang, Zhen
Title Temperature dependent performances of superconducting nanowire single-photon detectors in an ultralow-temperature region Type Journal Article
Year 2010 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal (down)
Volume 21 Issue 3 Pages 336 - 339
Keywords SNSPD
Abstract We report on the performance of a fiber-coupled superconducting nanowire single-photon detector (SNSPD) from 4 K down to the ultralow temperature of 16 mK for a 1550 nm wave length. The system detection efficiency (DE) increased with de creasing the temperature and reached the considerably high value of 15% with a dark count rate less than 100 cps below 1.5 K, even without an optical cavity structure. We also observed saturation of the system DE in its bias current dependency at 16 mK, which indicates that the device DE of our SNSPD nearly reached intrinsic DE despite the device having a large active area of 20 μm × 20 μm. The dark count was finite even at 16 mK and the black body radiation becomes its dominant origin in the low temperatures for fiber-coupled devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 656
Permanent link to this record