toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Stucki, Damien; Barreiro, Claudio; Fasel, Sylvain; Gautier, Jean-Daniel; Gay, Olivier; Gisin, Nicolas; Thew, Rob; Thoma, Yann; Trinkler, Patrick; Vannel, Fabien; Zbinden, Hugo openurl 
  Title Continuous high speed coherent one-way quantum key distribution Type Journal Article
  Year 2009 Publication Optics Express Abbreviated Journal (down) Opt. Express  
  Volume 17 Issue 16 Pages 13326-13334  
  Keywords quantum cryptography, QKD, PNS, SSPD, coherent one way, COW  
  Abstract Quantum key distribution (QKD) is the first commercial quantum technology operating at the level of single quanta and is a leading light for quantum-enabled photonic technologies. However, controlling these quantum optical systems in real world environments presents significant challenges. For the first time, we have brought together three key concepts for future QKD systems: a simple high-speed protocol; high performance detection; and integration both, at the component level and for standard fibre network connectivity. The QKD system is capable of continuous and autonomous operation, generating secret keys in real time. Laboratory and field tests were performed and comparisons made with robust InGaAs avalanche photodiodes and superconducting detectors. We report the first real world implementation of a fully functional QKD system over a 43dB-loss (150km) transmission line in the Swisscom fibre optic network where we obtained average real-time distribution rates over 3 hours of 2.5bps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 602  
Permanent link to this record
 

 
Author Stevens, Martin J.; Baek, Burm; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Hamilton, Scott A.; Berggren, Karl K.; Mirin, Richard P.; Nam, Sae Woo openurl 
  Title High-order temporal coherences of
chaotic and laser light Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal (down) Opt. Express  
  Volume 18 Issue 2 Pages 1430-1437  
  Keywords SNSPD  
  Abstract We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 685  
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim openurl 
  Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal (down) Opt. Express  
  Volume 18 Issue 26 Pages 27938-27954  
  Keywords quantum cryptography; QKD; hacking; SPD; APD  
  Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 729  
Permanent link to this record
 

 
Author Kovalyuk, V.; Hartmann, W.; Kahl, O.; Kaurova, N.; Korneev, A.; Goltsman, G.; Pernice, W. H. P. url  doi
openurl 
  Title Absorption engineering of NbN nanowires deposited on silicon nitride nanophotonic circuits Type Journal Article
  Year 2013 Publication Opt. Express Abbreviated Journal (down) Opt. Express  
  Volume 21 Issue 19 Pages 22683-22692  
  Keywords SSPD, SNSPD, NbN nanoeires, Si3N4 waveguides  
  Abstract We investigate the absorption properties of U-shaped niobium nitride (NbN) nanowires atop nanophotonic circuits. Nanowires as narrow as 20nm are realized in direct contact with Si3N4 waveguides and their absorption properties are extracted through balanced measurements. We perform a full characterization of the absorption coefficient in dependence of length, width and separation of the fabricated nanowires, as well as for waveguides with different cross-section and etch depth. Our results show excellent agreement with finite-element analysis simulations for all considered parameters. The experimental data thus allows for optimizing absorption properties of emerging single-photon detectors co-integrated with telecom wavelength optical circuits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:24104155 Approved no  
  Call Number Serial 1213  
Permanent link to this record
 

 
Author McCarthy, Aongus; Krichel, Nils J.; Gemmell, Nathan R.; Ren, Ximing; Tanner, Michael G.; Dorenbos, Sander N.; Zwiller, Val; Hadfield, Robert H.; Buller, Gerald S. doi  openurl
  Title Kilometer-range, high resolution depth imaging via 1560 nm wavelength single-photon detection Type Journal Article
  Year 2013 Publication Opt. Express Abbreviated Journal (down) Opt. Express  
  Volume 21 Issue 7 Pages 8904-8915  
  Keywords SSPD, SNSPD, lidar, SSPD applications, SNSPD applications  
  Abstract This paper highlights a significant advance in time-of-flight depth imaging: by using a scanning transceiver which incorporated a free-running, low noise superconducting nanowire single-photon detector, we were able to obtain centimeter resolution depth images of low-signature objects in daylight at stand-off distances of the order of one kilometer at the relatively eye-safe wavelength of 1560 nm. The detector used had an efficiency of 18% at 1 kHz dark count rate, and the overall system jitter was ~100 ps. The depth images were acquired by illuminating the scene with an optical output power level of less than 250 µW average, and using per-pixel dwell times in the millisecond regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1053  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: