|   | 
Details
   web
Records
Author Baeva, E. M.; Titova, N. A.; Kardakova, A. I.; Piatrusha, S. U.; Khrapai, V. S.
Title Universal bottleneck for thermal relaxation in disordered metallic films Type Journal Article
Year 2020 Publication JETP Lett. Abbreviated Journal Jetp Lett.
Volume 111 Issue 2 Pages 104-108
Keywords NbN disordered metallic films, thermal relaxation
Abstract (down) We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1164
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Kagane, M. L.
Title Energy spectrum of acceptors in germanium and its response to a magnetic field Type Journal Article
Year 1977 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 45 Issue 4 Pages 769-776
Keywords p-Ge, photoconductivity, energy spectrum, magnetic field
Abstract (down) We investigated the spectrum of the submillimeter photoconductivity of p-Ge at helium temperatures and the effects of a magnetic field up to 40 kOe on the spectrum. A large number of lines of transitions between the excited states of the acceptors was observed, some of the lines were identified, and the energies of a number of spectral levels B, Al, Ga, In, and TI in Ge were identified. The results are compared with calculations and with experimental data obtained from the spectra of the photoexcitation of the ground state of the impurities. Using one transition as an example, we discuss the splitting of the excited states of acceptors in the magnetic field and under uniaxial compression.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1727
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Gusinskii, E. N.; Malyavkin, A. V.; Ptitsina, N. G.; Selevko, A. G.; Edel'shtein, V. M.
Title The excitonic Zeeman effect in uniaxially-strained germanium Type Journal Article
Year 1987 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP
Volume 65 Issue 6 Pages 1233-1241
Keywords Ge, Zeeman effect
Abstract (down) We have carried out a high-resolution spectroscopic study of the absorption of submillimeter radiation by free excitons in germanium compressed along the [ 1 11 ] axis in a magnetic field parallel to the compression axis. In particular, we studied the splitting of the 1s- 2p transition in fields up to 6 kOe at T = 1.6 K, and observed a complex pattern in the Zeeman splitting which we believe is related to the effect of thermal motion of the excitons in a magnetic field on their internal structure (the magneto-Stark effect). The calculated submillimeter spectrum of excitons agrees with the experimental data. We predict that in a magnetic field the energy of the 2p, term is a minimum at a finite value of the exciton momentum perpendicular to the field-that is, the energy minimum forms a ring in momentum space. It follows that the density of states for this term must be a nonmonotonic function of the energy. A theory is developed of analogous phenomena in positronium.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1705
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K. V.
Title Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures Type Journal Article
Year 2001 Publication Jetp Lett. Abbreviated Journal Jetp Lett.
Volume 74 Issue 9 Pages 474-479
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract (down) Theoretical and experimental works devoted to studying electron-phonon interaction in the two-dimensional electron gas of semiconductor heterostructures at low temperatures in the case of strong heating in an electric field under quasi-equilibrium conditions and in a quantizing magnetic field perpendicular to the 2D layer are considered.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-3640 ISBN Medium
Area Expedition Conference
Notes По итогам проектов российского фонда фундаментальных исследований. Проект РФФИ # 98-02-16897 Электрон-фононное взаимодействие в двумерном электронном газе полупроводниковых гетероструктур при низких температурах Approved no
Call Number Serial 1541
Permanent link to this record
 

 
Author Aksaev, E. E.; Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title Interaction of electrons with thermal phonons in YBa2Cu3O7-δ films at low temperatures Type Journal Article
Year 1989 Publication JETP Lett. Abbreviated Journal JETP Lett.
Volume 50 Issue 5 Pages 283-286
Keywords YBCO HTS films
Abstract (down) The time of electron-phonon interaction tau(eph) in YBaCuO films at low temperatures is studied. This is measured as the time of resistance relaxation in the resistive state of the superconducter, and is also determined from the increase in resistance under the action of radiation. Consistent results of these methods show that resistance relaxation in the resistive state is caused by cooling of the electron subsystem with respect to the phonon subsystem. The time tau(eph) is found to be inversely proportional to the temperature and comes to 80 ps when T = 1.6 K and 5 ps when T = 30 K. 6 refs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1690
Permanent link to this record