|   | 
Details
   web
Records
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E.
Title Noise temperature and sensitivity of a NbN hot-electron mixer at frequencies from 0.7 THz to 5.2 THz Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 190-199
Keywords NbN HEB mixers
Abstract (down) We report on noise temperature measurements of a NbN phonon-cooled hot-electron bolometric mixer at different bias regimes. The device was a 3 nm thick bridge with in-plane dimensions of 1.7 x 0.2 gm 2 integrated in a complementary logarithmic spiral antenna. Measurements were performed at frequencies ranging from 0.7 THz up to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz) 5600 K (4.3 THz) and 8800 K (5.2 THz). Two bias regimes are possible in order to achieve low noise temperatures. But only one of them yields sensitivity fluctuations close to the theoretical limit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1573
Permanent link to this record
 

 
Author Gousev, Yu. P.; Olsson, H. K.; Gol'tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title NbN hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 121-129
Keywords NbN HEB mixers
Abstract (down) We report on noise temperature measurements for a NbN phonon-cooled hot-electron mixer at radiation frequencies between 0.9 THz and 1.2 THz. Radiation was coupled to the mixer, placed in a vacuum chamber of He cryostat, by means of a planar spiral antenna and a Si immersion lens. A backward-wave oscillator, tunable throughout the spectral range, delivered an output power of few 1.1W that was enough for optimum operation of the mixer. At 4.2 K ambient temperature and 1.025 THz radiation frequency, we obtained a receiver noise temperature of 1550 K despite of using a relatively noisy room-temperature amplifier at the intermediate frequency port. The noise temperature was fairly constant throughout the entire operation range and for intermediate frequencies from 1 GHz to 2 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1588
Permanent link to this record
 

 
Author Gousev, Y. P.; Gol'tsman, G. N.; Karasik, B. S.; Gershenzon, E. M.; Semenov, A. D.; Barowski, H. S.; Nebosis, R. S.; Renk, K. F.
Title Quasioptical superconducting hot electron bolometer for submillmeter waves Type Journal Article
Year 1996 Publication Int. J. of Infrared and Millimeter Waves Abbreviated Journal Int. J. of Infrared and Millimeter Waves
Volume 17 Issue 2 Pages 317-331
Keywords NbN HEB
Abstract (down) We report on a superconducting hot electron bolometer coupled to radiation via a broadband antenna. The bolometer, a structured NbN film, was patterned on a thin dielectric membrane between terminals of a gold slotline antenna. We investigated the response to submillimeter radiation (wave-lengths ∼ 0.1 mm to 0.7 mm) in the fundamental Gaussian mode. We found that the directivity of the antenna was constant within a factor of 2.5 through the whole experimental range. The noise equivalent power of the bolometer at 119 µm was ∼ 3 · 10−13 W/Hz1/2; a time constant of ∼ 160 ps was estimated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0195-9271 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1618
Permanent link to this record
 

 
Author Karasik, B. S.; Zorin, M. A.; Milostnaya, I. I.; Elantev, A. I.; Gol’tsman, G. N.; Gershenzon, E. M.
Title Evidence of subnanosecond transition stage in S-N current switching of YBaCuO films Type Conference Article
Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2160 Issue Pages 74-82
Keywords YBCO HTS switches
Abstract (down) We report on a study of S-N and N-S current switching in high quality YBaCuO films deposited onto ZrO2 and NdGaO3 substrates. The films 60-120 nm thick prepared by laser ablation were structured into single strips and were provided with gold contacts. We monitored the time dependence of the resistance upon application of the voltage step on the film. Experiment performed within certain ranges of voltage amplitudes and temperatures showed the occurrence of the fast stage both in S-N (shorter than 300 ps) and N-S transition. We discuss the mechanism of switching taking into account the hot electron phenomena in YBaCuO. The contributions of various thermal processes in the subsequent stage of the resistance dynamic are also discussed. The basic limiting characteristics (average dissipated power, minimum work done for switching, maximum repetition rate) of a picosecond switch which is proposed to be developed are estimated.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Buhrman, R.A.; Clarke, J.T.; Daly, K.; Koch, R.H.; Luine, J.A.; Simon, R.W.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Superconductive Devices and Circuits
Notes Approved no
Call Number Serial 1638
Permanent link to this record
 

 
Author Nebosis, R. S.; Steinke, R.; Lang, P. T.; Schatz, W.; Heusinger, M. A.; Renk, K. F.; Gol’tsman, G. N.; Karasik, B. S.; Semenov, A. D.; Gershenzon, E. M.
Title Picosecond YBa2Cu3O7−δdetector for far‐infrared radiation Type Journal Article
Year 1992 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 72 Issue 11 Pages 5496-5499
Keywords YBCO HTS detectors
Abstract (down) We report on a picosecond YBa2Cu3O7−δ detector for far‐infrared radiation. The detector, consisting of a current carrying structure cooled to liquid‐nitrogen temperature, was studied by use of ultrashort laser pulses from an optically pumped far‐infrared laser in the frequency range from 25 to 215 cm−1. We found that the sensitivity (1 mV/W) was almost constant in this frequency range. We estimated a noise equivalent power of less than 5×10−7 W Hz−1/2. Taking into account the results of a mixing experiment (in the frequency range from 4 to 30 cm−1) we suggest that the response time of the detector was few picoseconds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1668
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Elant'iev, A. I.; Karasik, B. S.; Gershenzon, E. M.
Title Antenna – coupled superconducting electron-heating bolometer Type Conference Article
Year 1993 Publication Proc. 4th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 4th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 623-628
Keywords HEB
Abstract (down) We propose a novel antenna-coupled superconducting bolometer based on electron-heating in the resistive state. A short narrow ultrathin super- conducting film strip (sized approximately 4x1x0.01 pm 3 ), which is in good thermal contact with the thermostat, serves as a resistive load for infrared or submillimeter current. In contrast to conventional isothermal super- conducting bolometers electron-heating ones can have a higher sensitivity which grows when filni. thickness is reduced. Response time of electron- heating bolometer does not depend on heat transfer from the film to the enviroment. To calculate the sensitivity (NEP), we have used experimental data on wideband Al, Nb and NbN bolometers which have the same un- derlying physical mechanism. The bolom.eters have been made in the form of a structure composed of a number of long narrow strips. The values of for Al, NEP have been found to be 1.5 . 113 -16 1 140 -15 ) and 2 . 10 – 14werT,-1/2 – Nb and NbN respectively. In the paper, the prospects are also discussed of improving the picosecond YBaCuO detector, developed recently. NEP value of the detector, if combined with a microantenna, can reach the order of 10- •ilz-v2.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1657
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Design and performance of the lattice-cooled hot-electron terahertz mixer Type Journal Article
Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 88 Issue 11 Pages 6758-6767
Keywords HEB mixer, charge imbalance, HF current distribution
Abstract (down) We present the measurements and the theoreticalmodel of the frequency-dependent noise temperature of a superconductor lattice-cooled hot-electron bolometer mixer in the terahertz frequency range. The increase of the noise temperature with frequency is a cumulative effect of the nonuniform distribution of the high-frequency current in the bolometer and the charge imbalance, which occurs at the edges of the normal domain and at the contacts with normal metal. We show that under optimal operation the fluctuation sensitivity of the mixer is determined by thermodynamic fluctuations of the noise power, whereas at small biases there appears additional noise, which is probably due to the flux flow. We propose the prescription of how to minimize the influence of the current distribution on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 306
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.–W.; Schubert, J.; Gol'tsman, G. N.; Elantiev, A. I.; Voronov, B. M.; Gershenzon, E. M.
Title Frequency dependent noise temperature of the lattice cooled hot-electron terahertz mixer Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 39-48
Keywords NbN HEB mixers
Abstract (down) We present the measurements and the theoretical model on the frequency dependent noise temperature of a lattice cooled hot electron bolometer (HEB) mixer in the terahertz frequency range. The experimentally observed increase of the noise temperature with frequency is a cumulative effect of the non-uniform distribution of the high frequency current in the bolometer and the charge imbalance, which occurs near the edges of the normal domain and contacts with normal metal. In addition, we present experimental results which show that the noise temperature of a HEB mixer can be reduced by about 30% due to a Parylene antireflection coating on the Silicon hyperhemispheric lens.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 305
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Chulcova, G. M.; Gol'Tsman, G. N.; Gershenzon, E. M.; Yngvesson, K. S.
Title Determination of the limiting mobility of a two-dimensional electron gas in AlxGa1-xAs/GaAs heterostructures and direct measurement of the energy relaxation time Type Journal Article
Year 1996 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.
Volume 53 Issue 12 Pages R7592-R7595
Keywords 2DEG, AlGaAs/GaAs heterostructures
Abstract (down) We present results for a method to measure directly the energy relaxation time (τe) for electrons in a single AlxGa1−xAs/GaAs heterojunction; measurements were performed from 1.6 to 15 K under quasiequilibrium conditions. We find τeαT−1 below 4 K, and τe independent of T above 4 K. We have also measured the energy-loss rate, ⟨Q⟩, by the Shubnikov-de Haas technique, and find ⟨Q⟩α(T3e−T3) for T<~4.2 K; Te is the electron temperature. The values and temperature dependence of τe and ⟨Q⟩ for T<4 K agree with calculations based on piezoelectric and deformation potential acoustic phonon scattering. At 4.2 K, we can also estimate the momentum relaxation time, τm, from our measured τe. This leads to a preliminary estimate of the phonon-limited mobility at 4.2 K of μ=3×107 cm2/Vs (ns=4.2×1011 cm−2), which agrees well with published numerical calculations, as well as with an earlier indirect estimate based on measurements on a sample with much higher mobility.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0163-1829 ISBN Medium
Area Expedition Conference
Notes PMID:9982274 Approved no
Call Number Serial 1612
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.
Title NbN hot-electron mixer measurements at 200 GHz Type Conference Article
Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 254-261
Keywords NbN HEB mixers
Abstract (down) We present noise and gain measurements of resistively driven NbN hot-electron mixers near 200 GHz. The device geometry is chosen so that the dominant cooling process of the hot-electrons is their interaction with the lattice. Except for a single batch, the intermediate frequency cut-off of these mixer elements is – 3 700 MHz, and has shown little variation among other batches of devices. At 100 MHz we measured intrinsic mixer losses as low as —3 dB. We measured the noise temperatures at several intermediate frequencies, and for the best de- vice at 137 MHz with 20 MHz bandwidth, we measured 2000 K; using a low-noise first- stage amplifier at 1.5 GHz with 200 MHz bandwidth, the receiver noise temperature measured 2800 K. We estimate that the noise contribution from the mixer is 500 K and the total losses are —15 dB at 137 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1626
Permanent link to this record