|   | 
Details
   web
Records
Author Shcherbatenko, M.; Lobanov, Y.; Kovalyuk, V.; Korneev, A.; Gol'tsman, G. N.
Title Photon counting detector as a mixer with picowatt local oscillator power requirement Type Conference Article
Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 27th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 110
Keywords SSPD mixer, SNSPD
Abstract (up) At the current stage of the heterodyne receiver technology, great attention is paid to the development of detector arrays and matrices comprising many detectors on a single wafer. However, any traditional THz detector (such as SIS, HEB, or Schottky diode) requires quite a noticeable amount of Local Oscillator (LO) power which scales with the matrix size, and the total amount of the LO power needed is much greater than that available from compact and handy solid state sources. Substantial reduction of the LO power requirement may be obtained with a photon-counting detector used as a mixer. This approach, mentioned earlier in [1,2] provides a number of advantages. Thus, sensitivity of such a detector would be at the quantum limit (because of the photon-counting nature of the detector) and just a few LO photons for the mixing would be required leading to a possible breakthrough in the matrix receiver development. In addition, the receiver could be easily tuned from the heterodyne to the direct detection mode without any loss in its sensitivity with the latter limited only by the quantum efficiency of the detector used. We demonstrate such a technique with the use of the Superconducting Nanowire Single Photon Detector(SNSPD)[3] irradiated by both 1.5 μm LO with a tiny amount of power (from a few picowatts down to femtowatts) facing the detector, and the test signal with a power significantly less than that of the LO. The SNSPD was operated in the current mode and the bias current was slightly below its critical value. Irradiating the detector with either the LO or the signal source produced voltage pulses which are statistically evenly distributed and could be easily counted by a lab counter or oscilloscope. Irradiating the detector by the both lasers simultaneously produced pulses at the frequency f m which is the exact difference between the frequencies at which the two lasers operate. f m could be deduced form either counts statistics integrated over a sufficient time interval or with the help of an RF spectrum analyzer. In addition to the chip SNSPD with normal incidence coupling, we use the detectors with a travelling wave geometry design [4]. In this case a niobium nitride nanowire is placed on the top of a nanophotonic waveguide, thus increasing the efficient interaction length. Integrated device scheme allows us to measure the optical losses with high accuracy. Our approach is fully scalable and, along with a large number of devices integrated on a single chip can be adapted to the mid and far IR ranges. This work was supported in part by the Ministry of Education and Science of the Russian Federation, contract no. 14.B25.31.0007 and by RFBR grant # 16-32-00465. 1. Leaf A. Jiang and Jane X. Luu, ―Heterodyne detection with a weak local oscillator, Applied Optics Vol. 47, Issue 10, pp. 1486-1503 (2008) 2. Matsuo H. ―Requirements on Photon Counting Detectors for Terahertz Interferometry J Low Temp Phys (2012) 167:840–845 3. A. Semenov, G. Gol'tsman, A. Korneev, “Quantum detection by current carrying superconducting film”, Physica C, 352, pp. 349-356 (2001) 4. O. Kahl, S. Ferrari, V. Kovalyuk, G. N. Goltsman, A. Korneev, and W. H. P. Pernice, ―Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths., Sci. Rep., vol. 5, p. 10941, (2015).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1203
Permanent link to this record
 

 
Author Kovalyuk, V.; Ferrari, S.; Kahl, O.; Semenov, A.; Lobanov, Yu; Shcherbatenko, M.; Korneev, A; Pernice, W.; Goltsman, G.
Title Waveguide integrated superconducting single-photon detector for on-chip quantum and spectral photonic application Type Conference Volume
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 421-422
Keywords waveguide, SSPD, SNSPD
Abstract (up) By adopting a travelling-wave geometry approach, integrated superconductor- nanophotonic devices were fabricated. The architecture consists of a superconducting NbN- nanowire atop of a silicon nitride (Si 3 N 4 ) nanophotonic waveguide. NbN-nanowire was operated as a single-photon counting detector, with up to 92% on-chip detection efficiency (OCDE), in the coherent mode, serving as a highly sensitive IR heterodyne mixer with spectral resolution (f/df) greater than 10^6 in C-band at 1550 nm wavelength.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1140 Approved no
Call Number Serial 1256
Permanent link to this record
 

 
Author Korneev, Alexander; Golt'sman, Gregory; Pernice, Wolfram
Title Photonic integration meets single-photon detection Type Miscellaneous
Year 2015 Publication Laser Focus World Abbreviated Journal Laser Focus World
Volume 51 Issue 5 Pages 47-50
Keywords optical waveguide SSPD, SNSPD
Abstract (up) By embedding superconducting nanowire single-photon detectors (SNSPDs) in nanophotonic circuits, these waveguide-integrated detectors are a key building block for future on-chip quantum computing applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial 1126
Permanent link to this record
 

 
Author Pyatkov, Felix; Khasminskaya, Svetlana; Fütterling, Valentin; Fechner, Randy; Słowik, Karolina; Ferrari, Simone; Kahl1, Oliver; Kovalyuk, Vadim; Rath, Patrik; Vetter, Andreas; Flavel, Benjamin S.; Hennrich, Frank; Kappes, Manfred M.; Gol’tsman, Gregory N.; Korneev, Alexander; Rockstuhl, Carsten; Krupke, Ralph; Pernice, Wolfram H. P.
Title Carbon nanotubes as exceptional electrically driven on-chip light sources Type Miscellaneous
Year 2016 Publication 2Physics Abbreviated Journal 2Physics
Volume Issue Pages
Keywords carbon nanotubes, CNT
Abstract (up) Carbon nanotubes (CNTs) belong to the most exciting objects of the nanoworld. Typically, around 1 nm in diameter and several microns long, these cylindrically shaped carbon-based structures exhibit a number of exceptional mechanical, electrical and optical characteristics [1]. In particular, they are promising ultra-small light sources for the next generation of optoelectronic devices, where electrical components are interconnected with photonic circuits.

Few years ago, we demonstrated that electically driven CNTs can serve as waveguide-integrated light sources [2]. Progress in the field of nanotube sorting, dielectrophoretical site-selective deposition and efficient light coupling into underlying substrate has made CNTs suitable for wafer-scale fabrication of active hybrid nanophotonic devices [2,3].

Recently we presented a nanotube-based waveguide integrated light emitters with tailored, exceptionally narrow emission-linewidths and short response times [4]. This allows conversion of electrical signals into well-defined optical signals directly within an optical waveguide, as required for future on-chip optical communication. Schematics and realization of this device is shown in Figure 1. The devices were manufactured by etching a photonic crystal waveguide into a dielectric layer following electron beam lithography. Photonic crystals are nanostructures that are also used by butterflies to give the impression of color on their wings. The same principle has been used in this study to select the color of light emitted by the CNT. The precise dimensions of the structure were numerically simulated to tailor the properties of the final device. Metallic contacts in the vicinity to the waveguide were fabricated to provide electrical access to CNT emitters. Finally, CNTs, sorted by structural and electronic properties, were deposited from a solution across the waveguide using dielectrophoresis, which is an electric-field-assisted deposition technique.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2372-1782 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1219
Permanent link to this record
 

 
Author Jukna, A.; Kitaygorsky, J.; Pan, D.; Cross, A.; Perlman, A.; Komissarov, I.; Sobolewski, R.; Okunev, O.; Smirnov, K.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Voronov, B.; Gol'tsman, G.
Title Dynamics of hotspot formation in nanostructured superconducting stripes excited with single photons Type Journal Article
Year 2008 Publication Acta Physica Polonica A Abbreviated Journal Acta Physica Polonica A
Volume 113 Issue 3 Pages 955-958
Keywords SSPD, SNSPD
Abstract (up) Dynamics of a resistive hotspot formation by near-infrared-wavelength single photons in nanowire-type superconducting NbN stripes was investigated. Numerical simulations of ultrafast thermalization of photon-excited nonequilibrium quasiparticles, their multiplication and out-diffusion from a site of the photon absorption demonstrate that 1.55 μm wavelength photons create in an ultrathin, two-dimensional superconducting film a resistive hotspot with the diameter which depends on the photon energy, and the nanowire temperature and biasing conditions. Our hotspot model indicates that under the subcritical current bias of the 2D stripe, the electric field penetrates the superconductor at the hotspot boundary, leading to suppression of the stripe superconducting properties and accelerated development of a voltage transient across the stripe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1414
Permanent link to this record
 

 
Author Vorobyov, V. V.; Kazakov, A. Y.; Soshenko, V. V.; Korneev, A. A.; Shalaginov, M. Y.; Bolshedvorskii, S. V.; Sorokin, V. N.; Divochiy, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Voronov, B. M.; Shalaev, V. M.; Akimov, A. V.; Goltsman, G. N.
Title Superconducting detector for visible and near-infrared quantum emitters [Invited] Type Journal Article
Year 2017 Publication Opt. Mater. Express Abbreviated Journal Opt. Mater. Express
Volume 7 Issue 2 Pages 513-526
Keywords SSPD, SNSPD
Abstract (up) Further development of quantum emitter based communication and sensing applications intrinsically depends on the availability of robust single-photon detectors. Here, we demonstrate a new generation of superconducting single-photon detectors specifically optimized for the 500–1100 nm wavelength range, which overlaps with the emission spectrum of many interesting solid-state atom-like systems, such as nitrogen-vacancy and silicon-vacancy centers in diamond. The fabricated detectors have a wide dynamic range (up to 350 million counts per second), low dark count rate (down to 0.1 counts per second), excellent jitter (62 ps), and the possibility of on-chip integration with a quantum emitter. In addition to performance characterization, we tested the detectors in real experimental conditions involving nanodiamond nitrogen-vacancy emitters enhanced by a hyperbolic metamaterial.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2159-3930 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1234
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title CMOS compatible nanoantenna-nanodiamond integration Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012180
Keywords bull-eye antenna, hyperbolic metamaterials, NV-centers
Abstract (up) Here we demonstrate CMOS compatible method to deterministically produce nanoantenna with nanodiamonds systems on example of bull-eye antenna on top of on hyperbolic metamaterials. We study the statistics of the placement of nanodiamonds and measure the fluorescence lifetime and the second-order correlation function of NV-centers inside nanodiamonds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1182
Permanent link to this record
 

 
Author Golikov, A.; Kovalyuk, V.; An, P.; Zubkova, E.; Ferrari, S.; Pernice, W.; Korneev, A.; Goltsman, G.
Title Silicon nitride nanophotonic circuit for on-chip spontaneous four-wave mixing Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051051
Keywords O-ring resonator
Abstract (up) Here we present an integrated nanophotonic circuit for on-chip spontaneous four-wave mixing. The fabricated device includes an O-ring resonator, a Bragg noch-filter as well as a nine-channel arrayed waveguide gratings (AWG) operated in the C-band wavelength range (1550 nm). The measured optical losses of the device (-6.8 dB) as well as a high Q-factor (> 1.2×105) shows a good potential for realizing the spontaneous four-wave mixing on the silicon nitride chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1193
Permanent link to this record
 

 
Author Kovalyuk, V.; Kahl, O.; Ferrari, S.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title On-chip single-photon spectrometer for visible and infrared wavelength range Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051045
Keywords single-photon spectrometer
Abstract (up) Here we show our latest progress in the field of a single-photon spectrometer for the visible and infrared wavelengths ranges implementation. We consider three different on-chip approaches: a coherent spectrometer with a low power of the heterodyne, a coherent spectrometer with a high power of the heterodyne, and an eight-channel single-photon spectrometer for direct detection. Along with high efficiency, spectrometers show high detection efficiency and temporal resolution through the use of waveguide integrated superconducting nanowire single-photon detectors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1197
Permanent link to this record
 

 
Author Komrakova, S.; Javadzade, J.; Vorobyov, V.; Bolshedvorskii, S.; Soshenko, V.; Akimov, A.; Kovalyuk, V.; Korneev, A.; Goltsman, G.
Title On-chip controlled placement of nanodiamonds with a nitrogen-vacancy color centers (NV) Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051046 (1 to 4)
Keywords nanodiamonds, NV-centers
Abstract (up) Here we studied the fabrication technique of a kilopixel array of nanodiamonds with a nitrogen-vacancy color centers (NV) on top of the chip and measured the second-order correlation function deep, clearly demonstrated the presence of single-photon sources. The controlled position of nanodiamonds, determined from the measurement of second-order correlation fiction, was realize, as well as the yield of optimized technique equals 12.5% is shown.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1298
Permanent link to this record