| 
Citations
 | 
   web
Gol'tsman, G., Minaeva, O., Korneev, A., Tarkhov, M., Rubtsova, I., Divochiy, A., et al. (2007). Middle-infrared to visible-light ultrafast superconducting single-photon detectors. IEEE Trans. Appl. Supercond., 17(2), 246–251.
toggle visibility
Smirnov, A. V., Baryshev, A. M., de Bernardis, P., Vdovin, V. F., Gol'tsman, G. N., Kardashev, N. S., et al. (2012). The current stage of development of the receiving complex of the millimetron space observatory. Radiophys. Quant. Electron., 54(8), 557–568.
toggle visibility
Cherednichenko, S., Rönnung, F., Gol'tsman, G., Kollberg, E., & Winkler, D. (2000). YBa2Cu3O7−δ hot-electron bolometer mixer. Phys. C: Supercond., 341-348, 2653–2654.
toggle visibility
Zolotov, P. I., Semenov, A. V., Divochiy, A. V., Goltsman, G. N., Romanov, N. R., & Klapwijk, T. M. (2021). Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of NbN. IEEE Trans. Appl. Supercond., 31(5), 1–5.
toggle visibility
Semenov, A. D., & Gol’tsman, G. N. (2000). Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector. J. Appl. Phys., 87(1), 502–510.
toggle visibility
Semenov, A. D., & Gol'tsman, G. N. (1999). Non-thermal response of a diffusion-cooled hot-electron bolometer. IEEE Trans. Appl. Supercond., 9(2), 4491–4494.
toggle visibility
Elezov, M., Ozhegov, R., Goltsman, G., & Makarov, V. (2019). Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution. Opt. Express, 27(21), 30979–30988.
toggle visibility
Lobanov, Y., Tong, E., Blundell, R., Hedden, A., Voronov, B., & Gol'tsman, G. (2011). Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz. IEEE Trans. Appl. Supercond., 21(3), 628–631.
toggle visibility
Polyakova, M., Semenov, A. V., Kovalyuk, V., Ferrari, S., Pernice, W. H. P., & Gol'tsman, G. N. (2019). Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency. IEEE Trans. Appl. Supercond., 29(5), 1–5.
toggle visibility
Marksteiner, M., Divochiy, A., Sclafani, M., Haslinger, P., Ulbricht, H., Korneev, A., et al. (2009). A superconducting NbN detector for neutral nanoparticles. Nanotechnol., 20(45), 455501.
toggle visibility
Shcherbatenko, M., Tretyakov, I., Lobanov, Y., Maslennikov, S. N., Kaurova, N., Finkel, M., et al. (2016). Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers. Appl. Phys. Lett., 109(13), 132602.
toggle visibility
Finkel, M., Thierschmann, H., Galatro, L., Katan, A. J., Thoen, D. J., de Visser, P. J., et al. (2017). Performance of THz components based on microstrip PECVD SiNx technology. IEEE Trans. THz Sci. Technol., 7(6), 765–771.
toggle visibility
Słysz, W., Wegrzecki, M., Bar, J., Grabiec, P., Górska, M., Zwiller, V., et al. (2007). Fibre-coupled, single photon detector based on NbN superconducting nanostructures for quantum communications. J. Modern Opt., 54(2-3), 315–326.
toggle visibility
Korneev, A., Lipatov, A., Okunev, O., Chulkova, G., Smirnov, K., Gol’tsman, G., et al. (2003). GHz counting rate NbN single-photon detector for IR diagnostics of VLSI CMOS circuits. Microelectronic Engineering, 69(2-4), 274–278.
toggle visibility
Marsili, F., Bitauld, D., Fiore, A., Gaggero, A., Leoni, R., Mattioli, F., et al. (2009). Superconducting parallel nanowire detector with photon number resolving functionality. J. Modern Opt., 56(2-3), 334–344.
toggle visibility