|   | 
Details
   web
Records
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords waveguide NbN HEB mixers
Abstract (up) The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E.
Title Heterodyne measurements of a NbN superconducting hot electron mixer at terahertz frequencies Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 9 Issue 2 Pages 3757-3760
Keywords NbN HEB mixers
Abstract (up) The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The best results of the DSB noise temperature at 1.5 GHz IF frequency obtained with one device are: 1300 K at 650 GHz, 4700 K at 2.5 THz and 10000 K at 3.12 THz. The measurements were performed at 4.5 K ambient temperature. The amount of local oscillator (LO) power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain measured at 650 GHz is -9 dB, the total conversion gain is -14 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1569
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol’tsman, G.; Gershenzon, E.
Title Performance of NbN phonon-cooled hot-electron bolometric mixer at Terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 149-152
Keywords NbN HEB mixers
Abstract (up) The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The results of the DSB noire temperature are: 1300 K at 650 GHz, 4700 K at 2.5 TBz and 10000 K at 3.12 THz. The RF bandwidth of the receiver is at least 2.5 THz. The amount of LO power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain is measured to be -9 dB, the total conversion gain -14 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1582
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Hübers, H.-W.; Schubert, J.; Schwaab, G.; Gol'tsman, G.; Gershenzon, E.
Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Conference Article
Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 238-246
Keywords NbN HEB mixers
Abstract (up) The performance of NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1- 0.2 gm, the width is 1-2 gm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power required is less than 500 nW at the receiver input. First results on the spiral antenna polarization measurements are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1575
Permanent link to this record
 

 
Author Yagoubov, Pavel; Kroug, Matthias; Merkel, Harald; Kollberg, Erik; Schubert, Josef; Hübers, Heinz-Wilhelm
Title NbN hot electron bolometric mixers at frequencies between 0.7 and 3.1 THz Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 989-991
Keywords NbN HEB mixers
Abstract (up) The performance of NbN-based phonon-cooled hot electron bolometric (HEB) quasioptical mixers is investigated in the 0.7-3.1 THz frequency range. The devices are made from a 3.5-4 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The length of the bolometer microbridge is 0.1-0.2 µm; the width is 1-2 µm. The best results of the DSB receiver noise temperature measured at 1.5 GHz intermediate frequency are: 800 K at 0.7 THz, 1100 K at 1.6 THz, 2000 K at 2.5 THz and 4200 K at 3.1 THz. The measurements were performed with a far infrared laser as the local oscillator (LO) source. The estimated LO power requirement is less than 500 nW at the receiver input. First results on spiral antenna polarization measurements are reported.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 295
Permanent link to this record