|   | 
Details
   web
Records
Author Delacour, C.; Claudon, J.; Poizat, J.-Ph.; Pannetier, B.; Bouchiat, V.; de Lamaestre, R. Espiau; Villegier, J.-C.; Tarkhov, M.; Korneev, A.; Voronov, B.; Gol'tsman, G.
Title Superconducting single photon detectors made by local oxidation with an atomic force microscope Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 90 Issue 19 Pages 191116 (1 t0 3)
Keywords SSPD
Abstract (up) The authors present a fabrication technique of superconducting single photon detectors made by local oxidation of niobium nitride ultrathin films. Narrow superconducting meander lines are obtained by direct writing of insulating niobium oxynitride lines through the films using voltage-biased tip of an atomic force microscope. Due to the 30nm resolution of the lithographic technique, the filling factor of the meander line can be made substantially higher than detector of similar geometry made by electron beam lithography, thus leading to increased quantum efficiency. Single photon detection regime of these devices is demonstrated at 4.2K.

The authors thank J.-P. Maneval for stimulating discussions. This work has been partly supported by ACI Nanoscience from French Ministry of Research, D.G.A., by Grant No. 02.445.11.7434 of Russian Ministry of Education and Science, and by the European Commission under project “SINPHONIA,” Contract No. NMP4-CT-2005-16433.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 423
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Semenov, A. D.; Gousev, Y. P.; Zorin, M. A.; Gogidze, I. G.; Gershenzon, E. M.; Lang, P. T.; Knott, W. J.; Renk, K. F.
Title Sensitive picosecond NbN detector for radiation from millimetre wavelengths to visible light Type Journal Article
Year 1991 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 4 Issue 9 Pages 453-456
Keywords NbN HEB detectors
Abstract (up) The authors report on the application of a broad-band NbN film detector which has high sensitivity and picosecond response time for detection of radiation from millimetre wavelengths to visible light. From a study of amplitude modulated radiation of backward-wave tubes and picosecond pulses from gas and solid state lasers at wavelengths between 2 mm and 0.53 mu m, they found a detectivity of 1010 W-1 cm Hz-1/2 and a response time of less than 50 ps at T=10 K. The characteristics were provided by using a 150 AA thick NbN film patterned into a structure of micron strips. According to the proposed detection mechanism, namely electron heating, they expect an intrinsic response time of approximately 20 ps at the same temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 242
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'In, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers on sapphire substrates Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 245-257
Keywords NbN HEB mixers, fabrication process
Abstract (up) The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 mm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 1.1 wide and 211 long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.5 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 276
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal
Volume 2 Issue Pages 972-977
Keywords HEB mixer, fabrication process
Abstract (up) The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address Jerusalem, Israel
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 27th Eur. Microwave Conf.
Notes Approved no
Call Number Serial 1075
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N.
Title A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 12 Issue 11 Pages 853-855
Keywords YBCO HTS HEB mixers
Abstract (up) The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1563
Permanent link to this record