toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Varyukhin, S. V.; Zakharov, A. A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Chulkova, G. M. url  openurl
  Title Low energy excitation in La2CuO4 Type Journal Article
  Year 1990 Publication Sverkhprovodimost': Fizika, Khimiya, Tekhnika Abbreviated Journal Sverkhprovodimost': Fizika, Khimiya, Tekhnika  
  Volume 3 Issue 5 Pages 832-837  
  Keywords metal-dielectric-La2CuO4, monocrystals  
  Abstract (down) Measurements of transmission and photoconductivity spectra in submillimeter wave length range as well as of capacity C and conductivity G in the region of acoustic frequencies of metal-dielectric-La2CuO4 system at low temperatures are performed using La2CuO4 monocrystals. Optical spectra posses a threshold character, a sharp decrease of transmission and photocoductivity signal occurs in the energy region hν>1.5 MeV. C(ω,T) and G(ω, T) dependences have a universal form typical of Debye type relaxation processes. Relaxation time dependence is of thermoactivated character τ(T)∼exp(ξ/T) with the gap value ξ≅2 meV. It is assumed that excitations with characteristic energy of ∼2 meV exist in La2CuO4. A possible nature of the detected low-energy excitations is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1688  
Permanent link to this record
 

 
Author Zhang, W.; Jiang, L.; Lin, Z. H.; Yao, Q. J.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Yu. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  openurl
  Title Development of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 209-213  
  Keywords NbN HEB mixers  
  Abstract (down) In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolometer) mixer measured at 500 and 850GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled by a 4-K close-cycled refrigerator. Measured receiver noise temperature at 850 and 500GHz are 3000K and 2500K respectively with wire grid as beamsplitter, while the lowest receiver noise temperature is found to be approximately 1200K with Mylar film. The theoretical receiver noise temperature (taking into account the elliptical polarization of log-spiral antenna) is consistent with measured one. The receiver noise temperature and conversion gain with 15-μm Mylar film as the beamsplitter at 500GHz are thoroughly investigated for different LO pumping levels and dc biases. The stability of the mixer’s IF output power is also demonstrated.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1470  
Permanent link to this record
 

 
Author Jiang, L.; Zhang, W.; Yao, Q. J.; Lin, Z. H.; Li, J.; Shi, S. C.; Svechnikov, S. I.; Vachtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting hot-electron bolometer mixer Type Conference Article
  Year 2005 Publication Proc. PIERS Abbreviated Journal Proc. PIERS  
  Volume 1 Issue 5 Pages 587-590  
  Keywords NbN HEB mixers  
  Abstract (down) In this paper, we report the performance of a quasi-optical NbN superconducting HEB (hot electron bolome-ter) mixer measured at 500 GHz. The quasi-optical NbN superconducting HEB mixer is cryogenically cooled bya 4-K close-cycled refrigerator. Its receiver noise temperature and conversion gain are thoroughly investigatedfor different LO pumping levels and dc biases. The lowest receiver noise temperature is found to be approxi-mately 1200 K, and reduced to about 445 K after correcting theloss of the measurement system. The stabilityof the mixer’s IF output power is also demonstrated.  
  Address Hangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1931-7360 ISBN Medium  
  Area Expedition Conference Progress In Electromagnetics Research Symposium  
  Notes Approved no  
  Call Number Serial 1482  
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 164-167  
  Keywords NbN HEB mixer  
  Abstract (down) In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 341  
Permanent link to this record
 

 
Author Krause, S.; Mityashkin, V.; Antipov, S.; Gol'tsman, G.; Meledin, D.; Desmaris, V.; Belitsky, V.; Rudzinski, M. url  openurl
  Title Study of IF bandwidth of NbN hot electron bolometers on GaN buffer layer using a direct measurement method Type Conference Article
  Year 2016 Publication Proc. 27th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 30-32  
  Keywords NbN HEB, GaN buffer layer  
  Abstract (down) In this paper, we present a reliable measurement method to study the influence of the GaN buffer layer on phonon-escape time in comparison with commonly used Si substrates and, in consequence, on the IF bandwidth of HEBs. One of the key aspects is to operate the HEB mixer at elevated bath temperatures close to the critical temperature of the NbN ultra-thin film, where contributions from electron-phonon processes and self-heating effects are relatively small, therefore IF roll-off will be governed by the phonon-escape.Two independent experiments were performed at GARD and MSPU on a similar experimental setup at frequencies of approximately 180 and 140 GHz, respectively, and have shown reproducible and consistent results. The entire IF chain was characterized by S-parameter measurements. We compared the measurement results of epitaxial NbN grown onto GaN buffer-layer with Tc of 12.5 K (4.5nm) with high quality polycrystalline NbN films on Si substrate with Tc of 10.5K (5nm) and observed a strong indication of an enhancement of phonon escape to the substrate by a factor of two for the NbN/GaN material combination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1202  
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-Y. E.; Papa, D. C.; Hunter, T. R.; Paine, S. N.; Patt, F.; Gol'tsman, G.; Cherednichenko, S.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Superconductive hot-electron-bolometer mixer receiver for 800-GHz operation Type Journal Article
  Year 2000 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal IEEE Trans. Microw. Theory Techn.  
  Volume 48 Issue 4 Pages 683-689  
  Keywords NbN HEB mixers, LO power, local oscillator power, saturation, linearity, dynamic range  
  Abstract (down) In this paper, we describe a superconductive hot-electron-bolometer mixer receiver designed to operate in the partially transmissive 350-μm atmospheric window. The receiver employs an NbN thin-film microbridge as the mixer element, in which the main cooling mechanism of the hot electrons is through electron-phonon interaction. At a local-oscillator frequency of 808 GHz, the measured double-sideband receiver noise temperature is TRX=970 K, across a 1-GHz intermediate-frequency bandwidth centered at 1.8 GHz. We have measured the linearity of the receiver and the amount of local-oscillator power incident on the mixer for optimal operation, which is PLO≈1 μW. This receiver was used in making observations as a facility instrument at the Heinrich Hertz Telescope, Mt. Graham, AZ, during the 1998-1999 winter observing season.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 573  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract (down) In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Jiang, Ling; Miao, Wei; Zhang, Wen; Li, Ning; Lin, Zhen Hui; Yao, Qi Jun; Shi, Sheng-Cai; Svechnikov, S. I.; Vakhtomin, Y. B.; Antipov, S. V.; Voronov, B. M.; Kaurova, N. S.; Gol'tsman, G. N. url  doi
openurl 
  Title Characterization of a quasi-optical NbN superconducting HEB mixer Type Journal Article
  Year 2006 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 54 Issue 7 Pages 2944-2948  
  Keywords NbN HEB mixers  
  Abstract (down) In this paper, the performance of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer, cryogenically cooled by a close-cycled 4-K refrigerator, is thoroughly investigated at 300, 500, and 850 GHz. The lowest receiver noise temperatures measured at the respective three frequencies are 1400, 900, and 1350 K, which can go down to 659, 413, and 529 K, respectively, after correcting the loss and associated noise contribution of the quasi-optical system before the measured superconducting HEB mixer. The stability of the quasi-optical superconducting HEB mixer is also investigated here. The Allan variance time measured with a local oscillator pumping at 500 GHz and an IF bandwidth of 110 MHz is 1.5 s at the dc-bias voltage exhibiting the lowest noise temperature and increases to 2.5 s at a dc bias twice that voltage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1448  
Permanent link to this record
 

 
Author Yazoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Lipatov, A.; Svechnikov, S.; Gershenzon, E. url  openurl
  Title Quasioptical NbN phonon-cooled hot electron bolometric mixers with low optimal local oscillator power Type Conference Article
  Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 131-140  
  Keywords NbN HEB mixers  
  Abstract (down) In this paper, the noise perform.ance of NIN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixers is investigated in the 0.55-1.1 THz frequency range. The best results of the DSB noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz and 1250 K at 1.1 THz. The water vapor in the signal path causes a significant contribution to the measured noise temperature around 1.1 THz. The required LO power is typically about 60 nW. The frequency response of the spiral antenna+lens system is measured using a Fourier Transform Spectrometer with the HEB operating in a detector mode.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1589  
Permanent link to this record
 

 
Author Lang, P. T.; Leipold, I.; Knott, W. J.; Semenov, A. D.; Gol'tsman, G. N.; Renk, K. F. url  doi
openurl 
  Title New far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser Type Journal Article
  Year 1991 Publication Appl. Phys. B Abbreviated Journal Appl. Phys. B  
  Volume 53 Issue 4 Pages 207-212  
  Keywords CO2 IR lasers, applications, CH3Cl, CH3Br  
  Abstract (down) In this paper we report on the detection of new far-infrared laser lines from CH3Cl and CH3Br optically pumped with a continuously tunable high pressure CO2 laser. We found 80 new lines for CH3Cl and 9 new lines for CH3Br in the frequency region between 16 cm−1 and 41 cm−1, all due to stimulated Raman scattering. For the Raman gain regions bandwidths up to about 700 MHz were found. We also observed high intensity short far-infrared laser pulses of durations in the nanosecond regime.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0721-7269 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1678  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: