toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Korneeva, Yu. P.; Trifonov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V. url  openurl
  Title Design of resonator for superconducting single-photon detector Type Journal Article
  Year 2011 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 12 Pages  
  Keywords SSPD optical resonator, SNSPD  
  Abstract (up) A resonator for superconducting single-photon detector is designed. Near 60% coupling with a radiation propagating from a dielectric substrate of optical fiber is demonstrated to be achieved for typical values of the detector’s film sheet resistance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 6 pages Approved no  
  Call Number Serial 1827  
Permanent link to this record
 

 
Author Minaeva, O.; Divochiy, A.; Korneev, A.; Sergienko, A. V.; Goltsman, G. N. url  doi
openurl 
  Title High speed infrared photon counting with photon number resolving superconducting single-photon detectors (SSPDs) Type Conference Article
  Year 2009 Publication CLEO/Europe – EQEC Abbreviated Journal CLEO/Europe – EQEC  
  Volume Issue Pages  
  Keywords SSPD, SNSPD  
  Abstract (up) A review of development and characterization of the nanostructures consisting of several meander sections, all connected in parallel was presented. Such geometry leads to a significant decrease of the kinetic inductance, without a decrease of the SSPD active area. A new type of SSPDs possess the QE of large-active- area devices, but, simultaneously, allows achieving short response times and the GHz-counting rate. This new generation of superconducting detectors has another significant advantage for quantum key distribution, they have a photon number resolving capability and can distinguish more photons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1399  
Permanent link to this record
 

 
Author Tretyakov, I.; Svyatodukh, S.; Chumakova, A.; Perepelitsa, A.; Kaurova, N.; Shurakov, A.; Zilberley, T.; Ryabchun, S.; Smirnov, M.; Ovchinnikov, O.; Goltsman, G. url  doi
isbn  openurl
  Title Room temperature silicon detector for IR range coated with Ag2S quantum dots Type Conference Article
  Year 2019 Publication IRMMW-THz Abbreviated Journal  
  Volume Issue Pages  
  Keywords Ag2S quantum dots  
  Abstract (up) A silicon has been the chief technological semiconducting material of modern microelectronics and has had a strong influence on all aspects of society. Applications of Si-based optoelectronic devices are limited to the visible and near infrared ranges. The expansion of the Si absorption to shorter wavelengths of the infrared range is of considerable interest to optoelectronic applications. By creating impurity states in Si it is possible to cause sub-band gap photon absorption. Here, we present an elegant and effective technology of extending the photoresponse of towards the IR range. Our approach is based on the use of Ag 2 S quantum dots (QDs) planted on the surface of Si. The specific sensitivity of the Ag 2 S/Si heterostructure is 10 11 cm√HzW -1 at 1.55μm. Our findings open a path towards the future study and development of Si detectors for technological applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2162-2035 ISBN 978-1-5386-8285-2 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 8874267 Serial 1286  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Semenov, A. D. url  openurl
  Title Submillimeter backward wave tube spectrometer for measuring superconducting film transmission Type Journal Article
  Year 1983 Publication Pribory i Tekhnika Eksperimenta Abbreviated Journal Pribory i Tekhnika Eksperimenta  
  Volume 26 Issue 5 Pages 134-137  
  Keywords BWO spectroscopy, spectrometer, transmission  
  Abstract (up) A spectrometer employing six backward wave tubes is described. It is intended for investigation of superconductors in the 0.2-3 mm range of wave lengths. During the measurement of the transmission spectrum it is possible to determine the energy gap for superconduct1ng films 50 to 4000 A thick. The transmission factor can vary from 10-1 to 10-9. Spectrum of relation of film transmission factors in superconducting and normal states is measured for determining the energy gap 2 Δ. The transmission spectrum obtained by means of a computer for vanadium film 300 A thick is given as an example. The energy gap 2 Δ = 1.4 MeV  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Russian Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0032-8162 ISBN Medium  
  Area Expedition Conference  
  Notes Субмиллиметровый спектрометр с лампами обратной волны для измерения пропускания сверхпроводниковых пленок Approved no  
  Call Number Serial 1713  
Permanent link to this record
 

 
Author Schwaab, G. W.; Hübers, H.-W.; Schubert, J.; Erichsen, Patrik; Gol'tsman, G.; Semenov, A.; Verevkin, A.; Cherednichenko, S.; Gershenzon, E. url  openurl
  Title A high resolution spectrometer for the investigation of molecular structures in the THZ range Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 530-538  
  Keywords antireflection coatings, dielectric mirrors  
  Abstract (up) A status report on the design study of a novel tunable far-infrared (TuFTR) spectrometer for the investigation of the structure of weakly bound molecular complexes is given. The goal is a sensitive TuFIR spectrometer with full frequency coverage from 1-6 THz. To hit the goal, advanced sources (e.g. p-Ge lasers) and detectors (e.g. superconducting hot electron bolometric (HEB) mixers) shall be employed to extend the technique of cavity ringdown spectroscopy, that is currently used at optical and infrared frequencies to the FIR spectral range. Critical for such a system are high-Q resonators that still allow good optical coupling, and wideband antireflection coatings to increase detector sensitivity and decrease optical path losses. 2 nd order effective media theory and an iterative multilayer algorithm have been employed to design wideband antireflection coatings for dielectrics with large dielectric constants like Ge or Si. Taking into account 6 layers, for Si bandwidths of 100% of the center frequency could be obtained with power reflectivities below 1% for both polarizations simultaneously. Wideband dielectric mirrors including absorption losses were also studied yielding a bandwidth of about 50% with reflectivities larger than 99.5%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1577  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: