|   | 
Details
   web
Records
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Mueller, E. R.; Waldman, J.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenco, S. I.; Svechnikov, S. I.; Yagoubov, P. A.; Gershenzon, E. M.
Title Optimization of hot eleciron bolometer mixing efficiency in NbN at 119 micrometer wavelength Type Conference Article
Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 584-600
Keywords NbN HEB mixers
Abstract (up) We describe an investigation of a NbN HEB mixer for 2.5 THz. An intrinsic conversion loss of 23 dB has been measured with a two-laser measurement technique. The conversion loss was limited by the LO power available and is expected to decrease to 10 dB or less when sufficient LO power is available. For this initial experiment we used a prototype device which is directly coupled to the laser beams. We present results for a back-short technique that improves the optical coupling to the device and describe our progress for an antenna-coupled device with a smaller dimension. Based on our measured data for conversion loss and device output noise level, we predict that NbN HEB mixers will be capable of achieving DSB receiver noise temperatures of ten times the quantum noise limit in the THz range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1616
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.
Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 258-271
Keywords NbN HEB mixers
Abstract (up) We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1605
Permanent link to this record
 

 
Author Schroeder, E.; Mauskopf, P.; Pilyavsky, G.; Sinclair, A.; Smith, N.; Bryan, S.; Mani, H.; Morozov, D.; Berggren, K.; Zhu, D.; Smirnov, K.; Vakhtomin, Y.
Title On the measurement of intensity correlations from laboratory and astronomical sources with SPADs and SNSPDs Type Conference Article
Year 2016 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9907 Issue Pages 99070P (1 to 13)
Keywords SPAD, NbN SSPD applications, SNSPD
Abstract (up) We describe the performance of detector modules containing silicon single photon avalanche photodiodes (SPADs) and superconducting nanowire single photon detectors (SNSPDs) to be used for intensity interferometry. The SPADs are mounted in fiber-coupled and free-space coupled packages. The SNSPDs are mounted in a small liquid helium cryostat coupled to single mode fiber optic cables which pass through a hermetic feed-through. The detectors are read out with microwave amplifiers and FPGA-based coincidence electronics. We present progress on measurements of intensity correlations from incoherent sources including gas-discharge lamps and stars with these detectors. From the measured laboratory performance of the correlation system, we estimate the sensitivity to intensity correlations from stars using commercial telescopes and larger existing research telescopes.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Malbet, F.; Creech-Eakman, M.J.; Tuthill, P.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Optical and Infrared Interferometry and Imaging V
Notes Approved no
Call Number Serial 1809
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S.
Title Thermal relaxation in metal films limited by diffuson lattice excitations of amorphous substrates Type Journal Article
Year 2021 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 15 Issue 5 Pages 054014
Keywords InOx, Au/Ni, NbN films
Abstract (up) We examine the role of a silicon-based amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The samples studied consist of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry is used to measure the electron temperature Te of the films as a function of Joule power per unit area P2D. In all samples, we observe a P2D∝Tne dependence, with exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear temperature dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for a phonon mean free path shorter than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1769
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R.
Title Picosecond superconducting single-photon optical detector Type Journal Article
Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 79 Issue 6 Pages 705-707
Keywords NbN SSPD, SNSPD
Abstract (up) We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1543
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Manova, N. N.; Korneeva, Y. P.; Korneev, A. A.
Title Timing jitter in NbN superconducting microstrip single-photon detector Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 14 Issue 4 Pages 044041 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract (up) We experimentally study timing jitter of single-photon detection by NbN superconducting strips with width w ranging from 190 nm to 3μm. We find that timing jitter of both narrow (190 nm) and micron-wide strips is about 40 ps at currents where internal detection efficiency η saturates and it is close to our instrumental jitter. We also calculate intrinsic timing jitter in wide strips using the modified time-dependent Ginzburg-Landau equation coupled with a two-temperature model. We find that with increasing width the intrinsic timing jitter increases and the effect is most considerable at currents where a rapid growth of η changes to saturation. We relate it with complicated vortex and antivortex dynamics, which depends on a photon’s absorption site across the strip and its width. The model also predicts that at current close to depairing current the intrinsic timing jitter of a wide strip could be about ℏ/kBTc (Tc is a critical temperature of superconductor), i.e., the same as for a narrow strip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1788
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title Improved sensitivity of NbN hot electron bolometer mixers by vacuum baking Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 222-225
Keywords NbN HEB mixer
Abstract (up) We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometer (HEB) in- creases by 25 − 30% after baking at 85 o C and in a high vacuum. The devices studied are twin-slot antenna coupled HEB mixers with a small NbN bridge of 1×0.15 μm 2 . The mixer noise temperature, gain, and resistance versus temperature curve of a HEB before and after baking are compared and analyzed. We show that baking reduces the intrinsic noise of the mixer by 37 % and makes the superconducting transition of the bridge and the contacts sharper. We argue that the reduction of the noise is due to the improvement of the transparency of the contact/film interface. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1471
Permanent link to this record
 

 
Author Yang, Z. Q.; Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Voronov, B.; Gol’tsman, G. N.
Title Reduced noise in NbN hot-electron bolometer mixers by annealing Type Journal Article
Year 2006 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 19 Issue 4 Pages L (9 to 12)
Keywords NbN HEB mixers
Abstract (up) We find that the sensitivity of heterodyne receivers based on superconducting hot-electron bolometers (HEBs) increases by 25–30% after annealing at 85 °C in vacuum. The devices studied are twin-slot antenna coupled mixers with a small NbN bridge of 1 × 0.15 µm2. We show that annealing changes the device properties as reflected in sharper resistive transitions of the complete device, apparently reducing the device-related noise. The lowest receiver noise temperature of 700 K is measured at a local oscillator frequency of 1.63 THz and a bath temperature of 4.3 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1456
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y. E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title An investigation of the performance of the superconducting HEB mixer as a function of its RF embedding impedance Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 472-475
Keywords waveguide NbN HEB mixers
Abstract (up) We have conducted an investigation of the optimal embedding impedance for a waveguide superconducting hot-electron bolometric (HEB) mixer. Three mixer chip designs for 800 GHz, offering nominal embedding resistances of 70 /spl Omega/, 35 /spl Omega/, and 15 /spl Omega/, have been developed. We used both High Frequency Structure Simulator (HFSS) software and scale model impedance measurements in the design process. We subsequently fabricated HEB mixers to these designs using 3-4 nm thick NbN thin film. Receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans were performed to determine the optimal combination of embedding impedance and normal-state resistance for a 50 Ohm IF load impedance. A receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer with normal state resistance of 62 /spl Omega/ incorporated into a circuit offering a nominal embedding impedance of 70 /spl Omega/. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 1439677 Serial 1464
Permanent link to this record
 

 
Author Loudkov, D.; Tong, C.-Y.E.; Blundell, R.; Kaurova, N.; Grishina, E.; Voronov, B.; Gol’tsman, G.
Title An investigation of the performance of the waveguide superconducting HEB mixer at different RF embedding impedances Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 226-229
Keywords waveguide NbN HEB mixers
Abstract (up) We have conducted an investigation of the performance of superconducting hot-electron bolometric (HEB) mixer at 800 GHz as a function of the embedding impedance of the waveguide embedding circuit. Using a single half-height mixer block, we have developed three different mixer chip configurations, offering nominal embedding resistances of 70, 35, and 15 Ohms. Both the High Frequency Structure Simulator (HFSS) software and scaled model impedance measurements were employed in the design process. Two batches of HEB mixers were fabricated to these designs using 3-4 nm thick NbN thin film. The mixers were characterized through receiver noise temperature measurements and Fourier Transform Spectrometer (FTS) scans. Briefly, a minimum receiver noise temperature of 440 K was measured at a local oscillator frequency 850 GHz for a mixer of normal state resistance 62 Ohms incorporated into a circuit offering a nominal embedding impedance of 70 Ohms. We conclude from our data that, for low noise operation, the normal state resistance of the HEB mixer element should be close to that of the embedding impedance of the mixer mount.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1472
Permanent link to this record