|   | 
Details
   web
Records
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
Title Experimental loss-tolerant quantum coin flipping Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue 561 Pages 7
Keywords fromIPMRAS
Abstract (up) Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 766
Permanent link to this record
 

 
Author Mineev, Vladimir P.
Title Superfluid helium: Order in disorder Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue Pages 253–254
Keywords fromIPMRAS
Abstract (up) Confining liquid 3He in porous silica aerogel prepared with strong anisotropy stabilizes a state of axial superfluidity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 810
Permanent link to this record
 

 
Author Saffman, Mark
Title Quantum computing: A quantum telecom link Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 11 Pages 838-839
Keywords fromIPMRAS
Abstract (up) Converting data-carrying photons to telecommunication wavelengths enables distribution of quantum information over long distances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 833
Permanent link to this record
 

 
Author Haviland, David
Title Superconducting circuits: Quantum phase slips Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue Pages 565–566
Keywords fromIPMRAS
Abstract (up) Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 807
Permanent link to this record
 

 
Author Kim, Yong-Su; Lee, Jong-Chan; Kwon, Osung; Kim, Yoon-Ho
Title Protecting entanglement from decoherence using weak measurement and quantum measurement reversal Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 2 Pages 117-120
Keywords fromIPMRAS
Abstract (up) Decoherence, often caused by unavoidable coupling with the environment, leads to degradation of quantum coherence. For a multipartite quantum system, decoherence leads to degradation of entanglement and, in certain cases, entanglement sudden death. Tackling decoherence, thus, is a critical issue faced in quantum information, as entanglement is a vital resource for many quantum information applications including quantum computing, quantum cryptography, quantum teleportation and quantum metrology. Here, we propose and demonstrate a scheme to protect entanglement from decoherence. Our entanglement protection scheme makes use of the quantum measurement itself for actively battling against decoherence and it can effectively circumvent even entanglement sudden death.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 815
Permanent link to this record