|   | 
Details
   web
Records
Author Barreiro, Julio T.
Title Quantum physics: Environmental effects controlled Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages 927–928
Keywords fromIPMRAS
Abstract (up) An open quantum system loses its 'quantumness' when information about the state leaks into its surroundings. Researchers now show how this decoherence can be controlled between two incompatible regimes in the case of a single photon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 817
Permanent link to this record
 

 
Author Bozyigit, D.; Lang, C.; Steffen, L.; Fink, J. M.; Eichler, C.; Baur, M.; Bianchetti, R.; Leek, P. J.; Filipp, S.; da Silva, M. P.; Blais, A.; Wallraff, A.
Title Antibunching of microwave-frequency photons observed in correlation measurements using linear detectors Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 2 Pages 154-158
Keywords fromIPMRAS
Abstract (up) At optical frequencies the radiation produced by a source, such as a laser, a black body or a single-photon emitter, is frequently characterized by analysing the temporal correlations of emitted photons using single-photon counters. At microwave frequencies, however, there are no efficient single-photon counters yet. Instead, well-developed linear amplifiers allow for efficient measurement of the amplitude of an electromagnetic field. Here, we demonstrate first- and second-order correlation function measurements of a pulsed microwave-frequency single-photon source integrated on the same chip with a 50/50 beam splitter followed by linear amplifiers and quadrature amplitude detectors. We clearly observe single-photon coherence in first-order and photon antibunching in second-order correlation function measurements of the propagating fields.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 835
Permanent link to this record
 

 
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
Title Experimental loss-tolerant quantum coin flipping Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue 561 Pages 7
Keywords fromIPMRAS
Abstract (up) Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 766
Permanent link to this record
 

 
Author Huang, Kevin C. Y.; Jun, Young Chul; Seo, Min-Kyo; Brongersma, Mark L.
Title Power flow from a dipole emitter near an optical antenna Type Journal Article
Year 2011 Publication Optics Express Abbreviated Journal Opt. Express
Volume 19 Issue 20 Pages 19084-19092
Keywords optical antennas
Abstract (up) Current methods to calculate the emission enhancement of a quantum emitter coupled to an optical antenna of arbitrary geometry rely on analyzing the total Poynting vector power flow out of the emitter or the dyadic Green functions from full-field numerical simulations. Unfortunately, these methods do not provide information regarding the nature of the dominant energy decay pathways. We present a new approach that allows for a rigorous separation, quantification, and visualization of the emitter output power flow captured by an antenna and the subsequent reradiation power flow to the far field. Such analysis reveals unprecedented details of the emitter/antenna coupling mechanisms and thus opens up new design strategies for strongly interacting emitter/antenna systems used in sensing, active plasmonics and metamaterials, and quantum optics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 743
Permanent link to this record
 

 
Author Zhu, J.; Christensen, J.; Jung, J.; Martin-Moreno, L.; Yin, X.; Fok, L.; Zhang, X.; Garcia-Vidal, F. J.
Title A holey-structured metamaterial for acoustic deep-subwavelength imaging Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 1 Pages 52-55
Keywords fromIPMRAS
Abstract (up) For classical waves such as light or sound, diffraction sets a natural limit on how finely the details of an object can be recorded on its image. Recently, various optical superlenses based on the metamaterials concept have shown the possibility of overcoming the diffraction limit. Similar two-dimensional (2D) acoustic hyperlens designs have also been explored. Here we demonstrate a 3D holey-structured metamaterial that achieves acoustic imaging down to a feature size of λ/50. The evanescent field components of a subwavelength object are efficiently transmitted through the structure as a result of their strong coupling with Fabry-Pérot resonances inside the holey plate. This capability of acoustic imaging at a very deep-subwavelength scale may open the door for a broad range of applications, including medical ultrasonography, underwater sonar and ultrasonic non-destructive evaluation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 809
Permanent link to this record