|   | 
Details
   web
Records
Author Toyabe, Shoichi; Sagawa, Takahiro; Ueda, Masahito; Muneyuki, Eiro; Sano, Masaki
Title Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 12 Pages 988-992
Keywords fromIPMRAS
Abstract (down) In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of “information-heat engine” which converts information to energy by feedback control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 831
Permanent link to this record
 

 
Author Feofanov, A. K.; Oboznov, V. A.; Bol'Ginov, V. V.; Lisenfeld, J.; Poletto, S.; Ryazanov, V. V.; Rossolenko, A. N.; Khabipov, M.; Balashov, D.; Zorin, A. B.; Dmitriev, P. N.; Koshelets, V. P.; Ustinov, A. V.
Title Implementation of superconductor/ferromagnet/ superconductor Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 8 Pages 593-597
Keywords fromIPMRAS
Abstract (down) High operation speed and low energy consumption may allow the superconducting digital single-flux-quantum circuits to outperform traditional complementary metal-oxide-semiconductor logic. The remaining major obstacle towards high element densities on-chip is a relatively large cell size necessary to hold a magnetic flux quantum Φ0. Inserting a Ï€-type Josephson junction in the cell is equivalent to applying flux Φ0/2 and thus makes it possible to solve this problem. Moreover, using Ï€-junctions in superconducting qubits may help to protect them from noise. Here we demonstrate the operation of three superconducting circuits-two of them are classical and one quantum-that all utilize such Ï€-phase shifters realized using superconductor/ferromagnet/superconductor sandwich technology. The classical circuits are based on single-flux-quantum cells, which are shown to be scalable and compatible with conventional niobium-based superconducting electronics. The quantum circuit is a Ï€-biased phase qubit, for which we observe coherent Rabi oscillations. We find no degradation of the measured coherence time compared to that of a reference qubit without a Ï€-junction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 805
Permanent link to this record
 

 
Author Prevedel, Robert; Hamel, Deny R.; Colbeck, Roger; Fisher, Kent; Resch, Kevin J.
Title Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages 757-761
Keywords fromIPMRAS
Abstract (down) Heisenberg's uncertainty principle provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 821
Permanent link to this record
 

 
Author Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei
Title Experimental entanglement of six photons in graph states Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 2 Pages 91-95
Keywords fromIPMRAS
Abstract (down) Graph states-multipartite entangled states that can be represented by mathematical graphs-are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement and fundamental tests of non-locality and decoherence. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states. We have created two important examples of graph states, a six-photon Greenberger-Horne-Zeilinger state, the largest photonic Schrödinger cat so far, and a six-photon cluster state, a state-of-the-art `one-way quantum computer'. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms or loss- and fault-tolerant one-way quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 796
Permanent link to this record
 

 
Author Zakka-Bajjani, Eva; Nguyen, François; Lee, Minhyea; Vale, Leila R.; Simmonds, Raymond W.; Aumentado, José
Title Quantum superposition of a single microwave photon in two different 'colour' states Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 8 Pages 599-603
Keywords fromIPMRAS
Abstract (down) Fully controlled coherent coupling of arbitrary harmonic oscillators is an important tool for processing quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems using a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by means of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by means of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~7GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different 'colours'. This parametric interaction can be described as a beamsplitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 822
Permanent link to this record