toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maezawa, Hiroyuki openurl 
  Title Application of superconducting hot-electron bolometer mixers for terahertz-band astronomy Type Journal Article
  Year 2015 Publication IEICE Trans. Electronics Abbreviated Journal  
  Volume 98 Issue 3 Pages 196-206  
  Keywords HEB mixer applications, HEB applications  
  Abstract (down) Recently, a next-generation heterodyne mixer detector – a hot electron bolometer (HEB) mixer employing a superconducting microbridge – has gradually opened up terahertz-band astronomy. The surrounding state-of-the-art technologies including fabrication processes, 4 K cryostats, cryogenic low-noise amplifiers, local oscillator sources, micromachining techniques, and spectrometers, as well as the HEB mixers, have played a valuable role in the development of super-low-noise heterodyne spectroscopy systems for the terahertz band. The current developmental status of terahertz-band HEB mixer receivers and their applications for spectroscopy and astronomy with ground-based, airborne, and satellite telescopes are presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1073  
Permanent link to this record
 

 
Author Takesue, Hiroki; Dyer, Shellee D.; Stevens, Martin J.; Verma, Varun; Mirin, Richard P.; Nam, Sae Woo doi  openurl
  Title Quantum teleportation over 100 km of fiber using highly efficient superconducting nanowire single-photon detectors Type Journal Article
  Year 2015 Publication Abbreviated Journal Optica  
  Volume 2 Issue Pages  
  Keywords  
  Abstract (down) Quantum teleportation is an essential quantum operation by which we can transfer an unknown quantum state to a remote location with the help of quantum entanglement and classical communication. Since the first experimental demonstrations using photonic qubits and continuous variables, the distance of photonic quantum teleportation over free-space channels has continued to increase and has reached >100 km. On the other hand, quantum teleportation over optical fiber has been challenging, mainly because the multifold photon detection that inevitably accompanies quantum teleportation experi- ments has been very inefficient due to the relatively low de- tection efficiencies of typical telecom-band single-photon detectors. Here, we report on quantum teleportation over optical fiber using four high-detection-efficiency supercon- ducting nanowire single-photon detectors (SNSPDs). These SNSPDs make it possible to perform highly efficient multi- fold photon measurements, allowing us to confirm that the quantum states of input photons were successfully tele- ported over 100 km of fiber with an average fidelity of 83.7  2.0%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ alex_kazakov @ Serial 1004  
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
  Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.  
  Volume 103 Issue Pages 10002 (1 to 2)  
  Keywords SSPD, SNSPD, QKD  
  Abstract (down) Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1352  
Permanent link to this record
 

 
Author Anosov, A. A.; Nemchenko, O. Yu.; Less, Yu. A.; Kazanskii, A. S.; Mansfel'd, A. D. doi  openurl
  Title Possibilities of acoustic thermometry for controlling targeted drug delivery Type Journal Article
  Year 2015 Publication Acoust. Phys. Abbreviated Journal  
  Volume 61 Issue 4 Pages 488-493  
  Keywords acoustic thermometry, liposome suspension, thermography  
  Abstract (down) Model acoustic thermometry experiments were conducted during heating of an aqueous liposome suspension. Heating was done to achieve the liposome phase transition temperature. At the moment of the phase transition, the thermal acoustic signal achieved a maximum and decreased, despite continued heating. During subsequent cooling of the suspension, when lipids again passed through the phase transition point, the thermal acoustic signal again increased, despite a reduction in temperature. This effect is related to an increase in ultrasound absorption by the liposome suspension at the moment of the lipid phase transition. The result shows that acoustic thermography can be used to control targeted delivery of drugs mixed in thermally sensitive liposomes, the integrity of which is violated during heating to the phase transition temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1130  
Permanent link to this record
 

 
Author Fedorov, G. E.; Gaiduchenko, I. A.; Golikov, A. D.; Rybin, M. G.; Obraztsova, E. D.; Voronov, B. M.; Coquillat, D.; Diakonova, N.; Knap, W.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Response of graphene based gated nanodevices exposed to THz radiation Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 10003 (1 to 2)  
  Keywords graphene field-effect transistor, FET  
  Abstract (down) In this work we report on the response of asymmetric graphene based devices to subterahertz and terahertz radiation. Our devices are made in a configuration of a field-effect transistor with conduction channel between the source and drain electrodes formed with a CVD-grown graphene. The radiation is coupled through a spiral antenna to source and top gate electrodes. Room temperature responsivity of our devices is close to the values that are attractive for commercial applications. Further optimization of the device configuration may result in appearance of novel terahertz radiation detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1350  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: