|   | 
Details
   web
Records
Author Rasulova, G. K.; Brunkov, P. N.; Pentin, I. V.; Kovalyuk, V. V.; Gorshkov, K. N.; Kazakov, A. Y.; Ivanov, S. Y.; Egorov, A. Y.; Sakseev, D. A.; Konnikov, S. G.
Title Mutual synchronization of two coupled self-oscillators based on GaAs/AlGaAs superlattices Type Journal Article
Year 2011 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 56 Issue 6 Pages 826-830
Keywords GaAs/AlGaAs superlattices
Abstract (up) The interaction of self-oscillators based on 30-period weakly coupled GaAs/AlGaAs superlattices is studied. The action of one self-oscillator on the other was observed for a constant bias voltage in the absence of generation of self-sustained oscillations in one of the oscillators. It is shown that induced oscillations in a forced oscillator appear due to excitation of oscillations in the system of coupled oscillators forming the electric-field domain wall at the frequency of one of the higher harmonics of a forcing oscillation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1214
Permanent link to this record
 

 
Author Shangina, E. L.; Smirnov, K. V.; Morozov, D. V.; Kovalyuk, V. V.; Gol’tsman, G. N.; Verevkin, A. A.; Toropov, A. I.
Title Frequency bandwidth and conversion loss of a semiconductor heterodyne receiver with phonon cooling of two-dimensional electrons Type Journal Article
Year 2010 Publication Semicond. Abbreviated Journal Semicond.
Volume 44 Issue 11 Pages 1427-1429
Keywords 2DEG, AlGaAs/GaAs heterostructures mixers
Abstract (up) The temperature and concentration dependences of the frequency bandwidth of terahertz heterodyne AlGaAs/GaAs detectors based on hot electron phenomena with phonon cooling of two-dimensional electrons have been measured by submillimeter spectroscopy with a high time resolution. At a temperature of 4.2 K, the frequency bandwidth at a level of 3 dB (f 3 dB) is varied from 150 to 250 MHz with a change in the concentration n s according to the power law f 3dB ∝ n −0.5 s due to the dominant contribution of piezoelectric phonon scattering. The minimum conversion loss of the semiconductor heterodyne detector is obtained in structures with a high carrier mobility (μ > 3 × 105 cm2 V−1 s−1 at 4.2 K).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7826 ISBN Medium
Area Expedition Conference
Notes Полоса и потери преобразования полупроводникового смесителя с фононным каналом охлаждения двумерных электронов Approved no
Call Number Serial 1216
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
Year 2017 Publication Optica Abbreviated Journal
Volume Issue Pages 1-9
Keywords Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution
Abstract (up) This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.
Address
Corporate Author Thesis
Publisher Osa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Kahl:17 Serial 1218
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N.
Title Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-5
Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide
Abstract (up) Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1206
Permanent link to this record
 

 
Author Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P.
Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
Year 2016 Publication LPHYS'16 Abbreviated Journal LPHYS'16
Volume Issue Pages 1-2
Keywords SSPD, SNSPD
Abstract (up) Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1220
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 16 Issue 11 Pages 7085-7092
Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity
Abstract (up) Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.
Address Institute of Physics, University of Munster , 48149 Munster, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:27759401 Approved no
Call Number Serial 1208
Permanent link to this record
 

 
Author Lobanov, Y. V.; Shcherbatenko, M. L.; Semenov, A. V.; Kovalyuk, V. V.; Korneev, A. A.; Goltsman, G. N.; Vinogradov, E. A.; Naumov, A. V.; Gladush, M. G.; Karimullin, K. R.
Title Heterodyne spectroscopy with superconducting single-photon detector Type Conference Article
Year 2017 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 132 Issue Pages 01005
Keywords SSPD mixer, SNSPD
Abstract (up) We demonstrate successful operation of a Superconducting Single Photon Detector (SSPD) as the core element in a heterodyne receiver. Irradiating the SSPD by both a local oscillator power and signal power simultaneously, we observed beat signal at the intermediate frequency of a few MHz. Gain bandwidth was found to coincide with the detector single pulse width, where the latter depends on the detector kinetic inductance, determined by the superconducting nanowire length.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1205
Permanent link to this record
 

 
Author Smirnov, E.; Golikov, A.; Zolotov, P.; Kovalyuk, V.; Lobino, M.; Voronov, B.; Korneev, A.; Goltsman, G.
Title Superconducting nanowire single-photon detector on lithium niobate Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051025
Keywords SSPD, SNSPD, lithium niobate, LN
Abstract (up) We demonstrate superconducting niobium nitride nanowires folded on top of lithium niobate substrate. We report of 6% system detection efficiency at 20 s−1 dark count rate at telecommunication wavelength (1550 nm). Our results shown great potential for the use of NbN nanowires in the field of linear and nonlinear integrated quantum photonics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1194
Permanent link to this record
 

 
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G.
Title Quantum key distribution over 300 Type Conference Article
Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 9440 Issue Pages 1F (1 to 9)
Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD
Abstract (up) We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Orlikovsky, A. A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Micro- and Nano-Electronics
Notes Approved no
Call Number RPLAB @ sasha @ ozhegov2014quantum Serial 1048
Permanent link to this record
 

 
Author Ferrari, S.; Kovalyuk, V.; Hartmann, W.; Vetter, A.; Kahl, O.; Lee, C.; Korneev, A.; Rockstuhl, C.; Gol'tsman, G.; Pernice, W.
Title Hot-spot relaxation time current dependence in niobium nitride waveguide-integrated superconducting nanowire single-photon detectors Type Journal Article
Year 2017 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 25 Issue 8 Pages 8739-8750
Keywords SSPD, SNSPD, photon counting; Infrared; Quantum detectors; Integrated optics; Multiphoton processes; Photon statistics
Abstract (up) We investigate how the bias current affects the hot-spot relaxation dynamics in niobium nitride. We use for this purpose a near-infrared pump-probe technique on a waveguide-integrated superconducting nanowire single-photon detector driven in the two-photon regime. We observe a strong increase in the picosecond relaxation time for higher bias currents. A minimum relaxation time of (22 +/- 1)ps is obtained when applying a bias current of 50% of the switching current at 1.7 K bath temperature. We also propose a practical approach to accurately estimate the photon detection regimes based on the reconstruction of the measured detector tomography at different bias currents and for different illumination conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1118
Permanent link to this record