|   | 
Details
   web
Records
Author Cherednichenko, S.; Drakinskiy, V.
Title Low noise hot-electron bolometer mixers for terahertz frequencies Type Journal Article
Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 151 Issue 1-2 Pages 575-579
Keywords HEB, mixer, gain bandwidth, MgB2
Abstract (down) Hot-electron bolometer (HEB) mixers are used in many low noise heterodyne radio astronomical receivers. Their noise temperature is at the level of 10–15 times the quantum limit. However, their gain bandwidth is a serious limiting factor. Here we review the state of the art of the HEB mixers gain bandwidth for different materials and substrates. We compare the gain bandwidth of HEB mixers made on bulk substrates and thin membranes. Finally, results for MgB2 thin films for broadband HEB mixers are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-2291 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 553
Permanent link to this record
 

 
Author Jiang, Leaf A.; Luu, Jane X.
Title Heterodyne detection with a weak local oscillator Type Journal Article
Year 2008 Publication Appl. Opt. Abbreviated Journal Appl. Opt.
Volume 47 Issue 10 Pages 1486-1503
Keywords weak local oscillator, weak LO, photon-counting detector, photon-counting mixer, counter detector, counter mixer, PD mixer, PCD mixer
Abstract (down) eterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 979
Permanent link to this record
 

 
Author Jukna, A.; Kitaygorsky, J.; Pan, D.; Cross, A.; Perlman, A.; Komissarov, I.; Sobolewski, R.; Okunev, O.; Smirnov, K.; Korneev, A.; Chulkova, G.; Milostnaya, I.; Voronov, B.; Gol'tsman, G.
Title Dynamics of hotspot formation in nanostructured superconducting stripes excited with single photons Type Journal Article
Year 2008 Publication Acta Physica Polonica A Abbreviated Journal Acta Physica Polonica A
Volume 113 Issue 3 Pages 955-958
Keywords SSPD, SNSPD
Abstract (down) Dynamics of a resistive hotspot formation by near-infrared-wavelength single photons in nanowire-type superconducting NbN stripes was investigated. Numerical simulations of ultrafast thermalization of photon-excited nonequilibrium quasiparticles, their multiplication and out-diffusion from a site of the photon absorption demonstrate that 1.55 μm wavelength photons create in an ultrathin, two-dimensional superconducting film a resistive hotspot with the diameter which depends on the photon energy, and the nanowire temperature and biasing conditions. Our hotspot model indicates that under the subcritical current bias of the 2D stripe, the electric field penetrates the superconductor at the hotspot boundary, leading to suppression of the stripe superconducting properties and accelerated development of a voltage transient across the stripe.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1414
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Y. B.; Ozhegov, R. V.; Pentin, I. V.; Slivinskaya, E. V.; Korneev, A. A.; Goltsman, G. N.
Title Fiber coupled single photon receivers based on superconducting detectors for quantum communications and quantum cryptography Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713827 (1 to 6)
Keywords SSPD, SNSPD, superconducting single photon detector, ultra-thin superconducting films, optical fiber coupling, ready to use receiver
Abstract (down) At present superconducting detectors become increasingly attractive for various practical applications. In this paper we present results on the depelopment of fiber coupled receiver systems for the registration of IR single photons, optimized for telecommunication and quantum-cryptography. These receiver systems were developed on the basis of superconducting single photon detectors (SSPD) of VIS and IR wavelength ranges. The core of the SSPD is a narrow ( 100 nm) and long ( 0,5 mm) strip in the form of a meander which is patterned from a 4-nm-thick NbN film (TC=10-11 K, jC= 5-7•106 A/cm2); the sensitive area dimensions are 10×10 μm2. The main problem to be solved while the receiver system development was optical coupling of a single-mode fiber (9 microns in diameter) with the SSPD sensitive area. Characteristics of the developed system at the optical input are as follows: quantum efficiency >10 % (at 1.3 μm), >4 % (at 1.55 μm); dark counts rate ≤1 s-1; duration of voltage pulse ≤5 ns; jitter ≤40 ps. The receiver systems have either one or two identical channels (for the case of carrying out correlation measurements) and are made as an insert in a helium storage Dewar.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1405
Permanent link to this record
 

 
Author Meledin D.; Desmaris V.; Ferm S.-E.; Fredrixon M.; Henke D.; Lapkin I.; Nyström O.; Pantaleev M.; Pavolotsky A.; Strandberg M.; Sundin E.; Belitsky V.
Title APEX Band T2: A 1.25 – 1.39 THz Waveguide Balanced HEB Receiver Type Journal Article
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 181-185
Keywords
Abstract (down) A waveguide 1.25–1.39 THz Hot Electron Bolometer (HEB) balanced receiver was successfully developed, characterized and installed at the Atacama Pathfinder EXperiment (APEX) telescope. The receiver employs a quadrature balanced scheme using a waveguide 90-degree 3 dB RF hybrid, HEB mixers and a 180-degree IF hybrid. The HEB mixers are based on ultrathin NbN film deposited on crystalline quartz with a MgO buffer layer. Integrated into the multi-channel APEX facility receiver (SHeFI), the results presented here demonstrate exceptional performance; a receiver noise temperature of 1000 K measured at the telescope at the center of the receiver IF band 2-4 GHz, and at an LO frequency of 1294 GHz. Stability of the receiver is fully in line with the SIS mixer bands of the SHeFI, and gives a spectroscopic Allan time of more than 200 s with a noise bandwidth of 1 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial 974
Permanent link to this record