toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
  Year 2016 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 50 Issue 12 Pages 1600-1603  
  Keywords carbon nanotubes, CNT detectors  
  Abstract (down) Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1776  
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Finkel, M.; Maslennikov, S.; Semenov, A.; Voronov, B. M.; Rodin, A. V.; Klapwijk, T. M.; Gol'tsman, G. N. doi  openurl
  Title NbN hot-electron-bolometer mixer for operation in the near-IR frequency range Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300704 (1 to 4)  
  Keywords HEB mixer, IR, optical antenna  
  Abstract (down) Traditionally, hot-electron-bolometer (HEB) mixers are employed for THz and “super-THz” heterodyne detection. To explore the near-IR spectral range, we propose a fiber-coupled NbN film based HEB mixer. To enhance the incident-light absorption, a quasi-antenna consisting of a set of parallel stripes of gold is used. To study the antenna effect on the mixer performance, we have experimentally studied a set of devices with different size of the Au stripe and spacing between the neighboring stripes. With use of the well-known isotherm technique we have estimated the absorption efficiency of the mixer, and the maximum efficiency has been observed for devices with the smallest pitch of the alternating NbN and NbN-Au stripes. Also, a proper alignment of the incident Eâƒ<2014>-field with respect to the stripes allows us to improve the coupling further. Studying IV-characteristics of the mixer under differently-aligned Eâƒ<2014>-field of the incident radiation, we have noticed a difference in their shape. This observation suggests that a difference exists in the way the two waves with orthogonal polarizations parallel and perpendicular Eâƒ<2014>-field to the stripes heat the electrons in the HEB mixer. The latter results in a variation in the electron temperature distribution over the HEB device irradiated by the two waves.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 952  
Permanent link to this record
 

 
Author Lobanov, Y.; Shcherbatenko, M.; Semenov, A.; Kovalyuk, V.; Kahl, O.; Ferrari, S.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B. M.; Pernice, W. H. P.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconducting nanowire single photon detector for coherent detection of weak signals Type Journal Article
  Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 27 Issue 4 Pages 1-5  
  Keywords NbN SSPD mixer, SNSPD, nanophotonic waveguide  
  Abstract (down) Traditional photon detectors are operated in the direct detection mode, counting incident photons with a known quantum efficiency. Here, we have investigated a superconducting nanowire single photon detector (SNSPD) operated as a photon counting mixer at telecommunication wavelength around 1.5 μm. This regime of operation combines excellent sensitivity of a photon counting detector with excellent spectral resolution given by the heterodyne technique. Advantageously, we have found that low local oscillator (LO) power of the order of hundreds of femtowatts to a few picowatts is sufficient for clear observation of the incident test signal with the sensitivity approaching the quantum limit. With further optimization, the required LO power could be significantly reduced, which is promising for many practical applications, such as the development of receiver matrices or recording ultralow signals at a level of less-than-one-photon per second. In addition to a traditional NbN-based SNSPD operated with normal incidence coupling, we also use detectors with a travelling wave geometry, where a NbN nanowire is placed on the top of a Si 3 N 4 nanophotonic waveguide. This approach is fully scalable and a large number of devices could be integrated on a single chip.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1206  
Permanent link to this record
 

 
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N. url  doi
openurl 
  Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW  
  Volume 2 Issue Pages 592-594  
  Keywords NbN HEB mixers  
  Abstract (down) To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.  
  Address Kharkov, Ukraine  
  Corporate Author Thesis  
  Publisher Place of Publication Kharkov, Ukraine Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)  
  Notes Approved no  
  Call Number Serial 351  
Permanent link to this record
 

 
Author Fedorov, G.; Kardakova, A.; Gayduchenko, I.; Voronov, B. M.; Finkel, M.; Klapwijk, T. M.; Goltsman, G. url  openurl
  Title Photothermoelectric response in asymmetric carbon nanotube devices exposed to sub-THz radiation Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 71  
  Keywords carbon nanotubes, CNT  
  Abstract (down) This work reports on the voltage response of asymmetric carbon nanotube devices to sub-THz radiation at the frequency of 140 GHz. The devices contain CNT’s, which are over their length partially suspended and partially Van der Waals bonded to a SiO 2 substrate, causing a difference in thermal contact. Different heat sinking of CNTs by source and drain gives rise to temperature gradient and consequent thermoelectric power (TEP) as such a device is exposed to the sub-THz radiation. Sign of the DC signal, its power and gate voltage dependence observed at room temperature are consistent with this scenario. At liquid helium temperature the observed response is more complex. DC voltage signal of an opposite sign is observed in a narrow range of gate voltages at low temperatures and under low radiation power. We argue that this may indicate a true photovoltaic response from small gap (less than 10meV) CNT’s, an effect never reported before. While it is not clear if the observed effects can be used to develop efficient THz detectors we note that the responsivity of our devices exceeds that of CNT based devices in microwave or THz range reported before at room temperature. Besides at 4.2 K notable increase of the sample conductance (at least four-fold) is observed. Our recent results with asymmetric carbon nanotube devices response to THz radiation (2.5 THz) will also be presented.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1361  
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
  Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 37 Issue 5 Pages 469-471  
  Keywords SSPD, SNSPD  
  Abstract (down) The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 664  
Permanent link to this record
 

 
Author Semenov, A. D.; Gousev, Y. P.; Renk, K. F.; Voronov, B. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Schwaab, G.W.; Feinaugle, R. url  doi
openurl 
  Title Noise characteristics of a NbN hot-electron mixer at 2.5 THz Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3572-3575  
  Keywords NbN HEB mixers  
  Abstract (down) The noise temperature of a NbN phonon cooled hot-electron mixer has been measured at a frequency of 2.5 THz for various operating conditions. We obtained for optimal operation a double sideband mixer noise temperature of /spl ap/14000 K and a system conversion loss of /spl ap/23 dB at intermediate frequencies up to 1 GHz. The dependences of the mixer noise temperature on the bias voltage, local oscillator power, and intermediate frequency were consistent with the phenomenological description based on the effective temperature approximation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1594  
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Yu. P.; Kaurova, N. S.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title Hot electron bolometer mixer for 20 – 40 THz frequency range Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 393-397  
  Keywords IR NbN HEB mixers  
  Abstract (down) The developed HEB mixer was based on a 5 nm thick NbN film deposited on a GaAs substrate. The active area of the film was patterned as a 30×20 μm 2 strip and coupled with a 50 Ohm coplanar line deposited in situ. An extended hemispherical germanium lens was used to focus the LO radiation on the mixer. The responsivity of the mixer was measured in a direct detection mode in the 25÷64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 μm wavelength CW CO 2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 369  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Finkel, M. I.; Maslennikov, S. N.; Vachtomin, Y. B.; Smirnov, K. V.; Seleznev, V. A.; Korotetskaya, Y. P.; Kaurova, N. S.; Voronov, B. M.; Gol’tsman, G. N. url  doi
openurl 
  Title Superconducting hot electron bolometer mixer for middle IR range Type Conference Article
  Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology  
  Volume 2 Issue Pages 686-687  
  Keywords IR NbN HEB mixer, detector, GaAs substrate  
  Abstract (down) The developed directly lens coupled hot electron bolometer (HEB) mixer was based on 5 nm superconducting NbN deposited on GaAs substrate. The layout of the structure, including 30x20 mcm^2 active area coupled with a 50 Ohm coplanar line, was patterned by photolithography. The responsivity of the mixer was measured in a direct detection mode in the 25-64 THz frequency range. The noise performance of the mixer and the directivity of the receiver were investigated in a heterodyne mode. A 10.6 mum wavelength CW CO2 laser was utilized as a local oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 4023440 Serial 1297  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Smirnov, K. V.; Voronov, B. M.; Gol’tsman, G. N.; Gershenson, E. M.; Yngvesson, K. S. url  doi
openurl 
  Title Multiple Andreev reflection in hybrid AlGaAs/GaAs structures with superconducting NbN contacts Type Journal Article
  Year 1999 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 33 Issue 5 Pages 551-554  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract (down) The conductivity of hybrid microstructures with superconducting contacts made of niobium nitride to a semiconductor with a two-dimensional electron gas in a AlGaAs/GaAs heterostructure has been investigated. Distinctive features of the behavior of the conductivity indicate the presence of multiple Andreev reflection at scattering centers in the normal region near the superconductor-semiconductor boundary.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1571  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: