|   | 
Details
   web
Records
Author Gershenzon, Ye. M.; Goltsman, G. N.; Yelantyev, A. I.; Petrova, Ye. B.; Ptitsina, N. G.; Filatov, V. S.
Title Lecture demonstrations of properties of superconductors and liquid helium Type Journal Article
Year 1987 Publication USSR Rept Phys. Math. JPRS UPM Abbreviated Journal USSR Rept Phys. Math. JPRS UPM
Volume 24 Issue 7 Pages 51
Keywords demonstrations, lections
Abstract (up) New demonstrations for low temperature physics courses are described. Two transparent Dewar vacuum flasks fitting one inside the other with the external flask for nitrogen and the internal flask for helium are used. The helium temperature can be regulated in the 4.2 to 1.6 K range and the effects of reducing helium to the superfluid state at 2.17 K can be shown: boiling abruptly stops and superfluid flow appears. In order to show the electric and magnetic characteristics of superconductivity, a superconducting NbTi solenoid containing nonsuperconducting wire and germanium and superconducting Nb materials with different critical temperatures is placed in the helium refrigerant vessel. The fall of the resistance at the critical temperatures can be shown. In order to show magnetic field and superconductive current flow properties a shunt of superconductive material is connected in parallel to the coil and is enclosed in a teflon container with a heater which can vary its temperature. When it is heated and not superconductive, magnetic field effects can be demonstrated and when it is unheated and superconducting a continuous current can be demonstrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1704
Permanent link to this record
 

 
Author Smirnov, K. V.; Vachtomin, Yu. B.; Antipov, S. V.; Maslennikov, S. N.; Kaurova, N. S.; Drakinsky, V. N.; Voronov, B. M.; Gol'tsman, G. N.; Semenov, A. D.; Richter, H.; Hubers, H.-W.
Title Noise and gain performance of spiral antenna coupled HEB mixers at 0.7 THz and 2.5 THz Type Conference Article
Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 405-412
Keywords NbN HEB mixers
Abstract (up) Noise and gain performance of hot electron bolometer (HEB) mixers based on ultrathin superconducting NbN films integrated with a spiral antenna was studied. The noise temperature measurements for two samples with different active area of 3 p.m x 0.24 .tni and 1.3 1..tm x 0.12 1.tm were performed at frequencies 0.7 THz and 2.5 THz. The best receiver noise temperatures 370 K and 1600 K, respectively, have been found at these frequencies. The influence of contact resistance between the superconductor and the antenna terminals on the noise temperature of HEB is discussed. The noise and gain bandwidth of 5GHz and 4.2 GHz, respectively, are demonstrated for similar HEB mixer at 0.75 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1502
Permanent link to this record
 

 
Author Sych, Denis; Shcherbatenko, Michael; Elezov, Michael; Goltsman, Gregory N.
Title Towards the improvement of the heterodyne receiver sensitivity beyond the quantum noise limit Type Conference Article
Year 2018 Publication Proc. 29th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 29th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 245-247
Keywords standard quantum limit, sub-SQL quantum receiver, Kennedy receiver, SSPD, SNSPD
Abstract (up) Noise reduction in heterodyne receivers of the terahertz range is an important issue for astronomical applications. Quantum fluctuations, also known as shot noise, prohibit errorless measurements of the amplitude of electro-magnetic waves, and introduce the so-called standard quantum limit (SQL) on the minimum error of the heterodyne measurements. Nowadays, the sensitivity of modern heterodyne receivers approaches the SQL, and the growing demand for the improvement of measurement precision stimulates a number of both theoretical and experimental efforts to design novel measurement techniques aimed at overcoming the SQL. Here we demonstrate the first steps towards the practical implementation of a sub-SQL quantum receiver. As the principal resources, it requires a highly efficient single-photon counting detector and an interferometer-based scheme for mixing the signal with a low-power local oscillator. We describe the idea of such receiver and its main components.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1314
Permanent link to this record
 

 
Author Karasik, B.S.; Lindgren, M.; Zorin, M.A.; Danerud, M.; Winkler, D.; Trifonov, V.V.; Gol’tsman, G.N.; Gershenzon, E.M.
Title Picosecond detection and broadband mixing of near-infrared radiation by YBaCuO films Type Conference Article
Year 1994 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2159 Issue Pages 68-76
Keywords YBCO HTS HEB mixer
Abstract (up) Nonequilibrium picosecond and bolometric responses of YBCO films 500 angstroms thick patterned into 20 X 20 micrometers 2 size structure to 17 ps laser pulses and modulated radiation of GaAs and CO2 lasers have been studied. The modulation frequencies up to 10 GHz for GaAs laser and up to 1 GHz for CO2 were attained. The use of small radiation power (1 – 10 mW/cm2 for cw radiation and 10 – 100 nJ/cm2 for pulse radiation) in combination with high sensitive read-out system made possible to avoid any non-linear transient processes caused by an overheating of sample above a critical temperature or S-N switching enhanced by an intense radiation. Responses due to the change of kinetic inductance were believed to be negligible. The only signals observed were caused by a small change of the film resistance either in the resistive state created by a bias current or in the normal state. The data obtained by means of pulse and modulation techniques are in agreement. The responsivity about 1 V/W was measured at 1 GHz modulation frequency both for 0.85 micrometers and 10.6 micrometers wavelengths. The sensitivity of high-Tc fast wideband infrared detector is discussed.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Nahum, M.; Villegier, J.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference High-Temperature Superconducting Detectors: Bolometric and Nonbolometric
Notes Approved no
Call Number Serial 1640
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N.
Title Single-photonics at telecom wavelengths using nanowire superconducting single photon detectors Type Conference Article
Year 2007 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages QTuF6 (1 to 2)
Keywords SSPD, SNSPD
Abstract (up) Novel single-photon detectors based on NbN superconducting nanostructures promise orders-of- magnitude improvement over InGaAs APDs. We demonstrate this improved performance for the first time by measuring the g(2)(τ) on single photon states produced by a quantum dot at telecom wavelength.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies
Notes Approved no
Call Number Zinoni:07 Serial 1432
Permanent link to this record