|   | 
Details
   web
Records
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Krieg, J.-M.; Voronov, B.; Gol'tsman, G.; Desmaris, V.
Title Gain bandwidth of NbN hot-electron bolometer terahertz mixers on 1.5 μm Si3N4 / SiO2 membranes Type Journal Article
Year 2007 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 101 Issue 12 Pages 124508 (1 to 6)
Keywords HEB, mixer, membrane
Abstract (up) The gain bandwidth of NbN hot-electron bolometer terahertz mixers on electrically thin Si3N4/SiO2 membranes was experimentally investigated and compared with that of HEB mixers on bulk substrates. A gain bandwidth of 3.5 GHz is achieved on bulk silicon, whereas the gain bandwidth is reduced down to 0.6–0.9 GHz for mixers on 1.5 μm Si3N4/SiO2 membranes. We show that application of a MgO buffer layer on the membrane extends the gain bandwidth to 3 GHz. The experimental data were analyzed using the film-substrate acoustic mismatch approach.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 560
Permanent link to this record
 

 
Author Gol’tsman, G. N.
Title The “Millimetron” project, a future space telescope mission Type Abstract
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 255
Keywords Millimetron space observatory, VLBI
Abstract (up) The goal of the Millimetron project is to develop a space observatory operating in the millimeter, sub-millimeter and infrared wavelength ranges using a 12-m actively cooled telescope in a single-dish mode and as an interferometer with the space-ground and space-space baselines (the later after the launch of the second identical space telescope). The Millimetron’s main reflector and other optics will be cooled down to 4K thus enabling astronomical observations with super high sensitivity in MM and subMM (down to nanoJansky level). Heterodyne observations in an interferometer mode at frequencies 0.1-1 THz will provide super high angular resolution. The main instruments, planned to be installed are wide-range imaging arrays, radiometers with spectrometers and polarimeters, VLBI heterodyne receivers, and Mikelson type interferometer devices. Wide-range MM and subMM imaging arrays and spectrometers will be based on a superconducting hot electron direct detectors with Andreev mirrors operating at 0.1 K. Such detectors are the best candidates to reach the noise equivalent power level of 10 -19 -10 -20 W/√Hz. Heterodyne receivers will be both SIS based superconducting integrated receiver with flux-flow oscillator as LO (0.1-0.9 THz range) and HEB based receivers using multiplied Gunn oscillator as LO for 1-2 THz range and quantum cascade lasers as LO for 2-5 THz range. For observations in middle IR region there will be installed large arrays of superconducting single photon detectors, providing imaging with very high dynamic range and ultimate sensitivity.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1422
Permanent link to this record
 

 
Author Kampfrath, Tobias; Perfetti, Luca; von Volkmann, Konrad; Aguirre, Carla M.; Desjardins, Patrick; Martel, Richard; Frischkorn, Christian; Wolf, Martin
Title Optical response of single-wall carbon nanotube sheets in the far-infrared spectral range from 1 THz to 40 THz Type Journal Article
Year 2007 Publication Physica Status Solidi (B) Abbreviated Journal Phys. Stat. Sol. (B)
Volume 244 Issue 11 Pages 3950-3954
Keywords single wall, carbon nanotube, SWNT, SWCNT, CNT, detector, sensor, TDS
Abstract (up) The optical properties of single-wall carbon nanotube sheets in the far-infrared have been investigated with THz time-domain spectroscopy. Over a wide frequency range from 1 THz to 40 THz, the complex dielectric function of the nanotube sample has been derived. Our data can be excellently reproduced by a Drude-Lorentz model function. The extracted fit parameters such as Lorentz resonance frequency and plasma frequency are consistent with values obtained by scanning tunneling techniques. We discuss the origin of both the Lorentz and Drude contribution in terms of direct and indirect optical transitions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0370-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 569
Permanent link to this record
 

 
Author Novotny, L.
Title The history of near-field optics Type Manuscript
Year 2007 Publication Progress in Optics Abbreviated Journal Prog. Opt.
Volume 50 Issue Pages 137-180
Keywords optical antennas
Abstract (up) This article provides a review of early work and developments in the field of near-field optics. The roots trace back to the letters exchanged between Edward Hutchinson Synge and Albert Einstein in 1928 and, because of the analogy to antenna theory and lightning rods, the origins project back to the time of Benjamin Franklin who discovered the wonderful Effect of Points both in drawing off and throwing off the Electrical Fire. The modern interest was mainly inspired by the invention of scanning probe microscopy and by the first optical near-field measurements by Dieter W. Pohl and co-workers at the IBM Research Laboratory in R¨uschlikon, Switzerland, and also by parallel developments of other groups. Near-field optics received inspiration from the fields of surface enhanced spectroscopy and from studies of energy transfer. While optical near-fields were extensively exploited for overcoming the diffraction limit in optical imaging the study of their physical aspects revealed unique properties which cannot be imitated by free propagating radiation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 752
Permanent link to this record
 

 
Author Dickert, Franz L.
Title Christoph A. Schalley (Ed.): Analytical methods in supramolecular chemistry Type Journal Article
Year 2007 Publication Analytical and Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem
Volume 389 Issue 7-8 Pages 2039-2040
Keywords supramolecular recognition
Abstract (up) This is a review of book.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1618-2642 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 563
Permanent link to this record
 

 
Author Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title The concept of the receiving complex for the “Millimetron” space radio telescope Type Journal Article
Year 2007 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.
Volume 50 Issue 10-11 Pages 837-846
Keywords HEB, applications, Millimetron, VLBI
Abstract (up) We consider the current status of research in the development of a submillimeter and far-infrared receiving instrument and propose promising solutions for the receivers of the spaceborne telescope “Millimetron,” which allow one to realize comprehensively the opportunities given by this international project administrated by the Astrospace Center of the P. N. Lebedev Physical Institute of the Russian Academy of Sciences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0033-8443 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 411
Permanent link to this record
 

 
Author Korneev, Alexander; Vachtomin, Yury; Minaeva, Olga; Divochiy, Alexander; Smirnov, Konstantin; Okunev, Oleg; Gol'tsman, Gregory; Zinoni, C.; Chauvin, Nicolas; Balet, Laurent; Marsili, Francesco; Bitauld, David; Alloing, Blandine; Li, Lianhe; Fiore, Andrea; Lunghi, L.; Gerardino, Annamaria; Halder, Matthäus; Jorel, Corentin; Zbinden, Hugo
Title Single-photon detection system for quantum optics applications Type Journal Article
Year 2007 Publication IEEE J. Select. Topics Quantum Electron. Abbreviated Journal IEEE J. Select. Topics Quantum Electron.
Volume 13 Issue 4 Pages 944-951
Keywords SSPD, SNSPD
Abstract (up) We describe the design and characterization of a fiber-coupled double-channel single-photon detection system based on superconducting single-photon detectors (SSPD), and its application for quantum optics experiments on semiconductor nanostructures. When operated at 2-K temperature, the system shows 10% quantum efficiency at 1.3-¿m wavelength with dark count rate below 10 counts per second and timing resolution <100 ps. The short recovery time and absence of afterpulsing leads to counting frequencies as high as 40 MHz. Moreover, the low dark count rate allows operation in continuous mode (without gating). These characteristics are very attractive-as compared to InGaAs avalanche photodiodes-for quantum optics experiments at telecommunication wavelengths. We demonstrate the use of the system in time-correlated fluorescence spectroscopy of quantum wells and in the measurement of the intensity correlation function of light emitted by semiconductor quantum dots at 1300 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1077-260X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 430
Permanent link to this record
 

 
Author Koch, Martin
Title Terahertz communications: a 2020 vision Type Book Chapter
Year 2007 Publication NATO Security through Science Series Abbreviated Journal
Volume 2007 Issue Pages 325-338
Keywords terahertz THz communications
Abstract (up) We discuss basic considerations for potential short-range THz communication systems which may replace or supplement present WLAN systems in 10–15 years from now. On the basis of a few fundamental estimations we show that such a system will need a line-of-sight connection between receiver and emitter. To circumvent the blocking of the direct line-of-sight connection indoor THz communication systems will also have to rely on non-line-of-sight paths which involve reflections off the walls. The reflectivity of the walls can be enhanced by dielectric mirrors. This new scheme makes steerable high-gain antennas a necessity. Hence, a wireless THz communication system can not be a simple extension of the existing technology of today's local area networks. Instead it involves completely new concepts and ideas that have not yet been worked upon.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 594
Permanent link to this record
 

 
Author Slysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Rieger, E.; Dorenbos, P.; Zwiller, V.; Milostnaya, I.; Minaeva, O.; Antipov, A.; Okunev, O.; Korneev, A.; Smirnov, K.; Voronov, B.; Kaurova, N.; Gol’tsman, G.N.; Kitaygorsky, J.; Pan, D.; Pearlman, A.; Cross, A.; Komissarov, I.; Sobolewski, R.
Title Fiber-coupled NbN superconducting single-photon detectors for quantum correlation measurements Type Conference Article
Year 2007 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6583 Issue Pages 65830J (1 to 11)
Keywords NbN SSPD, SNSPD, superconducting single-photon detectors, single-photon detectors, fiber-coupled optical detectors, quantum correlations, superconducting devices
Abstract (up) We have fabricated fiber-coupled superconducting single-photon detectors (SSPDs), designed for quantum-correlationtype experiments. The SSPDs are nanostructured ( 100-nm wide and 4-nm thick) NbN superconducting meandering stripes, operated in the 2 to 4.2 K temperature range, and known for ultrafast and efficient detection of visible to nearinfrared photons with almost negligible dark counts. Our latest devices are pigtailed structures with coupling between the SSPD structure and a single-mode optical fiber achieved using a micromechanical photoresist ring placed directly over the meander. The above arrangement withstands repetitive thermal cycling between liquid helium and room temperature, and we can reach the coupling efficiency of up to  33%. The system quantum efficiency, measured as the ratio of the photons counted by SSPD to the total number of photons coupled into the fiber, in our early devices was found to be around 0.3 % and 1% for 1.55 &mgr;m and 0.9 &mgr;m photon wavelengths, respectively. The photon counting rate exceeded 250 MHz. The receiver with two SSPDs, each individually biased, was placed inside a transport, 60-liter liquid helium Dewar, assuring uninterrupted operation for over 2 months. Since the receiver’s optical and electrical connections are at room temperature, the set-up is suitable for any applications, where single-photon counting capability and fast count rates are desired. In our case, it was implemented for photon correlation experiments. The receiver response time, measured as a second-order photon cross-correlation function, was found to be below 400 ps, with timing jitter of less than 40 ps.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Dusek, M.; Hillery, M.S.; Schleich, W.P.; Prochazka, I.; Migdall, A.L.; Pauchard, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Cryptography
Notes Approved no
Call Number Serial 1431
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G.
Title Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 391-394
Keywords NbN HEB mixers
Abstract (up) We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1427
Permanent link to this record