toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Belitsky, V.; Desmaris, V.; Dochev, D.; Meledin, D.; Pavolotsky, A. openurl 
  Title Towards Multi-Pixel Heterodyne Terahertz Receivers Type Conference Article
  Year 2011 Publication Proc. 22th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract (down) Terahertz multi-pixel heterodyne receivers introduce multiple challenges for their implementation, mostly due to the extremely small dimensions of all components and even smaller tolerances in terms of alignment, linear dimensions and waveguide component surface quality. In this manuscript, we present a concept of terahertz multi-pixel heterodyne receiver employing optical layout using polarization split between the LO and RF. The frontend isbased on a waveguide balanced HEB mixer for the frequency band 1.6 – 2.0 THz. The balanced HEB mixer followsthe layout of earlier demonstrated APEX T2 mixer. However for the mixer presented here, we implemented split-block layout offering inimized lengths of all waveguides and thus reducing the associated RF loss. The micromachining methods employed for producing the mixer housing and the HEB mixer chip are very suitable for producing multiple structures and hence are in-line with requirements of multi-pixel receiver technology. The demonstrated relatively simple mounting of the mixer chip with self-aligning should greatly facilitate the integration of such multi-channel receiver. Index Terms—Instrumentation, Multi-pixel, Terahertz, Waveguide Balanced Mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 975  
Permanent link to this record
 

 
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G. url  doi
openurl 
  Title Spectral sensitivity of narrow strip NbN superconducting single-photon detector Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 80720G (1 to 9)  
  Keywords NbN SSPD, SNSPD  
  Abstract (down) Superconducting single-photon detector (SSPD) is patterned from 4-nm-thick NbN film deposited on sapphire substrate as a 100-nm-wide strip. Due to its high detection efficiency, low dark counts, and picosecond timing jitter SSPD has become a competitor to the InGaAs avalanche photodiodes at 1550 nm and longer wavelengths. Although the SSPD is operated at liquid helium temperature its efficient single-mode fibre coupling enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. In our strive to increase the detection efficiency at 1550 nm and longer wavelengths we developed and fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm. To increase the voltage response of the device we utilized cascade switching mechanism: we connected 50-nm-wide and 10-μm-long strips in parallel covering the area of 10 μmx10 μm. Absorption of a photon breaks the superconductivity in a strip leading to the bias current redistribution between other strips followed their cascade switching. As the total current of all the strips about is 1 mA by the order of magnitude the response voltage of such an SSPD is several times higher compared to the traditional meander-shaped SSPDs. In middle infrared (about 3 μm wavelength) these devices have the detection efficiency several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Fiurásek, J.; Prochazka, I.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Photon Counting Applications, Quantum Optics, and Quantum Information Transfer and Processing III  
  Notes Approved no  
  Call Number Serial 1387  
Permanent link to this record
 

 
Author Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris openurl 
  Title Recent advances in superconducting NbN single-photon detector development Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 807202 (1 to 10)  
  Keywords SSPD  
  Abstract (down) Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 663  
Permanent link to this record
 

 
Author Kono, Junichiro openurl 
  Title Coherent terahertz control Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue Pages 5-6  
  Keywords fromIPMRAS  
  Abstract (down) Spin and charge terahertz excitations in solids are promising for implementing future technologies such as spintronics and quantum computation, but coherently controlling them has been a significant challenge. Researchers have now manipulated coherent spin waves in an antiferromagnet using the intense magnetic field of ultrashort terahertz pulses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 773  
Permanent link to this record
 

 
Author Capmany, José; Gasulla, Ivana; Sales, Salvador openurl 
  Title Microwave photonics: Harnessing slow light Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 12 Pages 731-733  
  Keywords fromIPMRAS  
  Abstract (down) Slow-light techniques originally conceived for buffering high-speed digital optical signals now look set to play an important role in providing broadband phase and true time delays for microwave signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 778  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: