toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G. url  doi
openurl 
  Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
  Year 2001 Publication OFCC/ICQI Abbreviated Journal OFCC/ICQI  
  Volume Issue Pages Pa3  
  Keywords NbN SSPD, SNSPD, QKD, quantum cryptography  
  Abstract (up) We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.  
  Address Rochester, New York  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information  
  Notes -- from poster session. Approved no  
  Call Number Serial 1544  
Permanent link to this record
 

 
Author Rubtsova, I.; Korneev, A.; Matvienko, V.; Chulkova, G.; Milostnaya, I.; Goltsman, G.; Pearlman, A.; Slysz, W.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Spectral sensitivity, quantum efficiency, and noise equivalent power of NbN superconducting single-photon detectors in the IR range Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 461-462  
  Keywords NbN SSPD, SNSPD  
  Abstract (up) We have developed nanostructured NbN superconducting single-photon detectors capable of GHz-rate photon counting in the 0.4 to 5 /spl mu/m wavelength range. Quantum efficiency of 30%, dark count rate 3/spl times/10/sup -4/ s/sup -1/, and NEP=10/sup -20/ W/Hz/sup -1/2/ have been measured at the 1.3-/spl mu/m wavelength for the device operating at 2.0 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1507  
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M. url  doi
openurl 
  Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
  Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3795 Issue Pages 357-368  
  Keywords NbN HEB mixers  
  Abstract (up) We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz and Gigahertz Photonics  
  Notes Approved no  
  Call Number Serial 1561  
Permanent link to this record
 

 
Author Seleznev, V. A.; Divochiy, A. V.; Vakhtomin, Y. B.; Morozov, P. V.; Zolotov, P. I.; Vasil'ev, D. D.; Moiseev, K. M.; Malevannaya, E. I.; Smirnov, K. V. url  doi
openurl 
  Title Superconducting detector of IR single-photons based on thin WSi films Type Conference Article
  Year 2016 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 737 Issue Pages 012032  
  Keywords WSi SSPD, SNSPD, NEP  
  Abstract (up) We have developed the deposition technology of WSi thin films 4 to 9 nm thick with high temperature values of superconducting transition (Tc~4 K). Based on deposed films there were produced nanostructures with indicative planar sizes ~100 nm, and the research revealed that even on nanoscale the films possess of high critical temperature values of the superconducting transition (Tc~3.3-3.7 K) which certifies high quality and homogeneity of the films created. The first experiments on creating superconducting single-photon detectors showed that the detectors' SDE (system detection efficiency) with increasing bias current (I b) reaches a constant value of ~30% (for X=1.55 micron) defined by infrared radiation absorption by the superconducting structure. To enhance radiation absorption by the superconductor there were created detectors with cavity structures which demonstrated a practically constant value of quantum efficiency >65% for bias currents Ib>0.6-Ic. The minimal dark counts level (DC) made 1 s-1 limited with background noise. Hence WSi is the most promising material for creating single-photon detectors with record SDE/DC ratio and noise equivalent power (NEP).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1235  
Permanent link to this record
 

 
Author Gol'tsman, G.; Kouminov, P.; Goghidze, I.; Gershenzon, E. url  doi
openurl 
  Title Nonequilibrium kinetic inductive response of YBCO thin films to low power laser pulses Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2591-2594  
  Keywords YBCO HTS KID  
  Abstract (up) We have discovered a transient nonequilibrium kinetic inductive voltage response of YBCO thin films to 20 ps pulses of YAG:Nd laser radiation with 0.63 /spl mu/m and 1.54 /spl mu/m wavelength. By increasing the sensitivity of the read-out system with 100 ps resolution time and diminishing the light intensity (fluence 0.1-2 /spl mu/J/cm/sup 2/) and transport current (density /spl les/10/sup 5/ A/cm/sup 2/) we were able to observe a peculiar bipolar signal form with nearly equal amplitudes for each sign. The integration of the kinetic inductive response over time gives the result which is qualitatively, of the same form as the response in the resistive and normal states: the nonequilibrium picosecond scale component is followed by the bolometric nanosecond component. The nonequilibrium response is interpreted as suppression of the order parameter by excess quasiparticles followed by a change both in resistance (for the resistive state) and in kinetic inductance (for the superconducting state).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: