|   | 
Details
   web
Records
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N.
Title Superconductivity behavior in epitaxial TiN films points to surface magnetic disorder Type Journal Article
Year 2019 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 12 Issue 5 Pages 054001
Keywords epitaxial TiN films
Abstract (down) We analyze the evolution of the normal and superconducting properties of epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of the residual resistivity, that becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such high-quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of approximately 1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1166
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y.
Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 13 Issue 2 Pages 024011 (1 to 7)
Keywords MoSi SSPD, SNSPD
Abstract (down) The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1790
Permanent link to this record
 

 
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zadeh, Iman E.; Zwiller, Valery; Benson, Oliver
Title Measuring the quantum nature of light with a single source and a single detector Type Journal Article
Year 2012 Publication Phys. Rev. A Abbreviated Journal
Volume 86 Issue 5 Pages 053814
Keywords SSPD, SNSPD, saturation count rates, dead time, dynamic range
Abstract (down) An elementary experiment in optics consists of a light source and a detector. Yet, if the source generates nonclassical correlations such an experiment is capable of unambiguously demonstrating the quantum nature of light. We realized such an experiment with a defect center in diamond and a superconducting detector. Previous experiments relied on more complex setups, such as the Hanbury Brown and Twiss configuration, where a beam splitter directs light to two photodetectors, creating the false impression that the beam splitter is a fundamentally required element. As an additional benefit, our results provide a simplification of the widely used photon-correlation techniques.
Address
Corporate Author Thesis
Publisher American Physical Society Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1089
Permanent link to this record