|   | 
Details
   web
Records
Author Korneeva, Y. P.; Vodolazov, D. Y.; Semenov, A. V.; Florya, I. N.; Simonov, N.; Baeva, E.; Korneev, A. A.; Goltsman, G. N.; Klapwijk, T. M.
Title Optical single photon detection in micron-scaled NbN bridges Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords SSPD
Abstract (down) We demonstrate experimentally that single photon detection can be achieved in micron-wide NbN bridges, with widths ranging from 0.53 μm to 5.15 μm and for photon-wavelengths from 408 nm to 1550 nm. The microbridges are biased with a dc current close to the experimental critical current, which is estimated to be about 50 % of the theoretically expected depairing current. These results offer an alternative to the standard superconducting single-photon detectors (SSPDs), based on nanometer scale nanowires implemented in a long meandering structure. The results are consistent with improved theoretical modelling based on the theory of non-equilibrium superconductivity including the vortex-assisted mechanism of initial dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1303 Approved no
Call Number Serial 1312
Permanent link to this record
 

 
Author Dorenbos, S. N.; Heeres, R.W.; Driessen, E.F.C; Zwiller, V.
Title Efficient and robust fiber coupling of superconducting single photon detectors Type Journal Article
Year 2011 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 6
Keywords SSPD
Abstract (down) We applied a recently developed fiber coupling technique to superconducting single photon detectors (SSPDs). As the detector area of SSPDs has to be kept as small as possible, coupling to an optical fiber has been either inefficient or unreliable. Etching through the silicon substrate allows fabrication of a circularly shaped chip which self aligns to the core of a ferrule terminated fiber in a fiber sleeve. In situ alignment at cryogenic temperatures is unnecessary and no thermal stress during cooldown, causing misalignment, is induced. We measured the quantum efficiency of these devices with an attenuated tunable broadband source. The combination of a lithographically defined chip and high precision standard telecommunication components yields near unity coupling efficiency and a system detection efficiency of 34% at a wavelength of 1200 nm. This quantum efficiency measurement is confirmed by an absolute efficiency measurement using correlated photon pairs (with $\lambda$ = 1064 nm) produced by spontaneous parametric down-conversion. The efficiency obtained via this method agrees well with the efficiency measured with the attenuated tunable broadband source.
Address
Corporate Author Thesis
Publisher Place of Publication arXiv:1109.5809 Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 689
Permanent link to this record
 

 
Author Saveskul, N. A.; Titova, N. A.; Baeva, E. M.; Semenov, A. V.; Lubenchenko, A. V.; Saha, S.; Reddy, H.; Bogdanov, S. I.; Marinero, E. E.; Shalaev, V. M.; Boltasseva, A.; Khrapai, V. S.; Kardakova, A. I.; Goltsman, G. N.
Title Superconductivity behavior in epitaxial TiN films points at surface magnetic disorder Type Miscellaneous
Year 2019 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-10
Keywords
Abstract (down) We analyze the evolution of the normal and superconducting electronic properties in epitaxial TiN films, characterized by high Ioffe-Regel parameter values, as a function of the film thickness. As the film thickness decreases, we observe an increase of in the residual resistivity, which becomes dominated by diffusive surface scattering for d≤20nm. At the same time, a substantial thickness-dependent reduction of the superconducting critical temperature is observed compared to the bulk TiN value. In such a high quality material films, this effect can be explained by a weak magnetic disorder residing in the surface layer with a characteristic magnetic defect density of ∼1012cm−2. Our results suggest that surface magnetic disorder is generally present in oxidized TiN films.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1278
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J.
Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
Year 2011 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords NbN thin film, energy gap dynamics
Abstract (down) Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 641 Approved no
Call Number Serial 1388
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Korneev, A.; Chulkova, G.; Korneeva, Y.; Mikhailov, M.; Devizenko, A.; Kozorezov, A.; Goltsman, G.
Title Electron-phonon relaxation time in ultrathin tungsten silicon film Type Miscellaneous
Year 2018 Publication arXiv Abbreviated Journal
Volume Issue Pages
Keywords WSi film
Abstract (down) Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1341 Approved no
Call Number Serial 1340
Permanent link to this record