toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kok, Pieter openurl 
  Title Quantum optics: Entangled photons report for duty Type Journal Article
  Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 4 Issue 8 Pages 504-505  
  Keywords fromIPMRAS  
  Abstract (up) Entangled photons are a key ingredient in optical quantum technologies, but researchers have so far been unable to produce a single pair of entangled photons. Now, two groups from China and Austria independently report just that, with a technique that avoids the need to infer entanglement from detection signatures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 772  
Permanent link to this record
 

 
Author Pris, Andrew D.; Utturkar, Yogen; Surman, Cheryl; Morris, William G.; Vert, Alexey; Zalyubovskiy, Sergiy; Deng, Tao; Ghiradella, Helen T.; Potyrailo, Radislav A. openurl 
  Title Towards high-speed imaging of infrared photons with bio-inspired nanoarchitectures Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 195-200  
  Keywords fromIPMRAS  
  Abstract (up) Existing infrared detectors rely on complex microfabrication and thermal management methods. Here, we report an attractive platform of low-thermal-mass resonators inspired by the architectures of iridescent Morpho butterfly scales. In these resonators, the optical cavity is modulated by its thermal expansion and refractive index change, resulting in `wavelength conversion' of mid-wave infrared (3-8 µm) radiation into visible iridescence changes. By doping Morpho butterfly scales with single-walled carbon nanotubes, we achieved mid-wave infrared detection with 18-62 mK noise-equivalent temperature difference and 35-40 Hz heat-sink-free response speed. The nanoscale pitch and the extremely small thermal mass of individual `pixels' promise significant improvements over existing detectors. Computational analysis explains the origin of this thermal response and guides future conceptually new bio-inspired thermal imaging sensor designs.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 785  
Permanent link to this record
 

 
Author Goulielmakis, Eleftherios openurl 
  Title Attosecond photonics: Extreme ultraviolet catastrophes Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue 3 Pages 142-143  
  Keywords fromIPMRAS  
  Abstract (up) Extreme ultraviolet attosecond pulses, which emerge from the interaction of atoms with intense laser fields, play a central role in modern ultrafast science and the exploration of electron behaviour. Recent work now shows that catastrophe theory can help optimize the properties of these pulses.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 791  
Permanent link to this record
 

 
Author Hase, Muneaki; Katsuragawa, Masayuki; Constantinescu, Anca Monia; Petek, Hrvoje openurl 
  Title Frequency comb generation at terahertz frequencies by coherent phonon excitation in silicon Type Journal Article
  Year 2012 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 6 Issue Pages 243–247  
  Keywords fromIPMRAS  
  Abstract (up) High-order nonlinear light–matter interactions in gases enable the generation of X-ray and attosecond light pulses, metrology and spectroscopy1. Optical nonlinearities in solid-state materials are particularly interesting for combining optical and electronic functions for high-bandwidth information processing2. Third-order nonlinear optical processes in silicon have been used to process optical signals with bandwidths greater than 1 GHz (ref. 2). However, fundamental physical processes for a silicon-based optical modulator in the terahertz bandwidth range have not yet been explored. Here, we demonstrate ultrafast phononic modulation of the optical index of silicon by irradiation with intense few-cycle femtosecond pulses. The anisotropic reflectivity modulation by the resonant Raman susceptibility at the fundamental frequency of the longitudinal optical phonon of silicon (15.6 THz) generates a frequency comb up to seventh order. All-optical >100 THz frequency comb generation is realized by harnessing the coherent atomic motion of the silicon crystalline lattice at its highest mechanical frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 794  
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek openurl 
  Title Antennas for light Type Journal Article
  Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.  
  Volume 5 Issue 2 Pages 83-90  
  Keywords optical antennas  
  Abstract (up) Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 748  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: