toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Рябчун, С. А. pdf  openurl
  Title Широкополосные высокостабильные терагерцовые смесители на горячих электронах из тонких сверхпроводниковых пленок NbN Type Manuscript
  Year 2009 Publication М. МПГУ Abbreviated Journal  
  Volume Issue Pages 98  
  Keywords HEB, mixer, terahertz, THz, stability, Allan variance, conversion bandwidth, in-situ technique, Au contacts  
  Abstract (up)  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 598  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J. M.; Delorme, Y.; Feret, A.; Hübers, H. W.; Semenov, A. D.; Gol'tsman, G. N. url  doi
openurl 
  Title 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6275 Issue Pages 62750I (1 to 11)  
  Keywords HEB, mixer, membrane  
  Abstract (up) A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5 µm thick Si3N4/SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4/SiO2 membranes was found to be 0.7÷0.9 GHz, which is much smaller than for similar devices on silicon. Application of buffer layers and use of alternative types of membranes (e.g. silicon-on-insulator) is under investigation.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 561  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V. url  doi
openurl 
  Title Low noise hot-electron bolometer mixers for terahertz frequencies Type Journal Article
  Year 2008 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.  
  Volume 151 Issue 1-2 Pages 575-579  
  Keywords HEB, mixer, gain bandwidth, MgB2  
  Abstract (up) Hot-electron bolometer (HEB) mixers are used in many low noise heterodyne radio astronomical receivers. Their noise temperature is at the level of 10–15 times the quantum limit. However, their gain bandwidth is a serious limiting factor. Here we review the state of the art of the HEB mixers gain bandwidth for different materials and substrates. We compare the gain bandwidth of HEB mixers made on bulk substrates and thin membranes. Finally, results for MgB2 thin films for broadband HEB mixers are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-2291 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 553  
Permanent link to this record
 

 
Author Cao, Aiqin; Jiang, L.; Chen, S.H.; Antipov, S.V.; Shi, S.C. doi  openurl
  Title IF gain bandwidth of a quasi-optical NbN superconducting HEB mixer Type Conference Article
  Year 2007 Publication Proc. International conference on microwave and millimeter wave technology Abbreviated Journal Proc. ICMMT  
  Volume Issue Pages 1-3  
  Keywords HEB, mixer, gain bandwidth  
  Abstract (up) In this paper, the intermediate frequency (IF) gain bandwidth of a quasi-optical NbN superconducting hot-electron bolometer (HEB) mixer is investigated at 500 GHz with an IF system incorporating with a frequency down-converting scheme which is able to sweep the IF signal in a frequency range of 0.3-4 GHz. The IF gain bandwidth of the device is measured to be 1.5 GHz when it is biased at a voltage of the minimum noise temperature, and becomes larger when the bias voltage increases.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Builin Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 575  
Permanent link to this record
 

 
Author Meledin, Denis; Pavolotsky, Alexey; Desmaris, Vincent.; Lapkin, Igor; Risacher, Christophe; Perez, Victor; Henke, Douglas; Nystrom, Olle; Sundin, Erik; Dochev, Dimitar; Pantaleev, Miroslav; Fredrixon, Mathias; Strandberg, Magnus; Voronov, Boris; Goltsman, Gregory; Belitsky, Victor url  doi
openurl 
  Title A 1.3-THz balanced waveguide HEB mixer for the APEX telescope Type Journal Article
  Year 2009 Publication IEEE Trans. Microw. Theory Techn. Abbreviated Journal  
  Volume 57 Issue 1 Pages 89-98  
  Keywords HEB, mixer, waveguide, balanced, NbN  
  Abstract (up) In this paper, we report about the development, fabrication, and characterization of a balanced waveguide hot electron bolometer (HEB) receiver for the Atacama Pathfinder EXperiment telescope covering the frequency band of 1.25–1.39 THz. The receiver uses a quadrature balanced scheme and two HEB mixers, fabricated from 4- to 5-nm-thick NbN film deposited on crystalline quartz substrate with an MgO buffer layer in between. We employed a novel micromachining method to produce all-metal waveguide parts at submicrometer accuracy (the main-mode waveguide dimensions are 90×180 μm). We present details on the mixer design and measurement results, including receiver noise performance, stability and “first-light” at the telescope site. The receiver yields a double-sideband noise temperature averaged over the RF band below 1200 K, and outstanding stability with a spectroscopic Allan time more than 200 s.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ lobanovyury @ Serial 554  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: