toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Moshkova, M.; Morozov, P.; Seleznev, V.; Smirnov, K. url  doi
openurl 
  Title Photon-number-resolving SSPDs with system detection efficiency over 50% at telecom range Type Conference Article
  Year 2018 Publication Proc. AIP Conf. Abbreviated Journal  
  Volume 1936 Issue 1 Pages 020019  
  Keywords NbN PNR SSPD, SNSPD  
  Abstract (down) We used technology of making high-efficiency superconducting single-photon detectors as a basis for improvement of photon-number-resolving devices. By adding optical cavity and using an improved NbN superconducting film, we enhanced previously reported system detection efficiency at telecom range for such detectors. Our results show that implementation of optical cavity helps to develop four-section device with quantum efficiency over 50% at 1.55 µm. Performed experimental studies of detecting multi-photon optical pulses showed irregularities over defining multi-photon through single-photon quantum efficiency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1063/1.5025457 Serial 1231  
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Korneeva, Y. P.; Semenov, A. V.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Vortex-assisted mechanism of photon counting in a superconducting nanowire single-photon detector revealed by external magnetic field Type Journal Article
  Year 2015 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 92 Issue 10 Pages 104503 (1 to 9)  
  Keywords SSPD, SNSPD  
  Abstract (down) We use an external magnetic field to probe the detection mechanism of a superconducting nanowire single-photon detector. We argue that the hot belt model (which assumes partial suppression of the superconducting order parameter Δ across the whole width of the superconducting nanowire after absorption of the photon) does not explain observed weak-field dependence of the photon count rate (PCR) for photons with λ=450nm and noticeable decrease of PCR (with increasing the magnetic field) in a range of the currents for photons with wavelengths λ=450–1200nm. Found experimental results for all studied wavelengths can be explained by the vortex hot spot model (which assumes partial suppression of Δ in the area with size smaller than the width of the nanowire) if one takes into account nucleation and entrance of the vortices to the photon induced hot spot and their pinning by the hot spot with relatively large size and strongly suppressed Δ.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1098-0121 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1343  
Permanent link to this record
 

 
Author de Lange, Gert; Krieg, Jean-Michel; Honingh, Netty; Karpov, Alexandre; Cherednichenko, Sergey openurl 
  Title Performance of the HIFI flight mixers Type Conference Article
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 98-105  
  Keywords HEB mixer applications, HEB applications  
  Abstract (down) We summarize the technology and final results of the superconducting heterodyne SIS and HEB mixers that are developed for the HIFI instrument. Within HIFI 7 frequency bands cover the frequency range from 480 GHz to 1910 GHz. We describe the different device technologies and optical coupling schemes that are used to cover the frequency bands. The efforts of the different mixer teams that participate in HIFI have contributed to an instrument that will have unprecedented sensitivity and frequency coverage.  
  Address Groningen  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1074  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Baryshev, A.; Kooi, J.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Hot electron bolometer mixers with improved interfaces: sensitivity, LO power and stability Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 17-24  
  Keywords NbN HEB mixers  
  Abstract (down) We study twin slot antenna coupled NbN hot electron bolometer mixers with an improved contact structure and a small volume, ranging from 1 µm × 0.1 µm to 2 × 0.3 µm. We obtain a DSB receiver noise temperature of 900 K at 1.6 THz and 940 K at 1.9 THz. To explore the practical usability of such small HEB mixers we evaluate the LO power requirement, the sensitivity and the stability. We find that the LO power requirement of the smallest mixers is reduced to about 240 nW at the Si lens of the mixer. This value is larger than expected from the isothermal technique and the known losses in the lens by a factor of 3-3.5. The stability of these receivers is characterized using a measurement of the Allan Variance. We find an Allan time of 0.5 sec. in an 80 MHz bandwidth. A small increase in stability can be reached by using a higher bias at the expense of a significant amount of sensitivity. The stability is sufficient for spectroscopic applications in a 1 MHz bandwidth at a 1 Hz chopping frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1491  
Permanent link to this record
 

 
Author Shah, Nayana; Pekker, David; Goldbart, Paul M. doi  openurl
  Title Inherent stochasticity of superconductor-resistor switching behavior in nanowires Type Journal Article
  Year 2008 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 101 Issue Pages 207001(1 to 4)  
  Keywords superconducting nanowires, phase-slip, self-heating effect, temperature profile  
  Abstract (down) We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 919  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: