toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semenov, A. D.; Gol’tsman, G. N.; Gogidze, I. G.; Sergeev, A. V.; Gershenzon, E. M.; Lang, P. T.; Renk, K. F. url  doi
openurl 
  Title Subnanosecond photoresponse of a YBaCuO thin film to infrared and visible radiation by quasiparticle induced suppression of superconductivity Type Journal Article
  Year 1992 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 60 Issue 7 Pages 903-905  
  Keywords YBCO HTS detectors  
  Abstract (up) We observed subnanosecond photoresponse of a structured superconducting YBa2Cu3O7−δ thin film to infrared and visible radiation. We measured the voltage response of a current biased film (thickness 700 Å) in a resistive state to radiation pulses. From our results we conclude a response time of about 90 ps and a responsivity of about 4×1010 Ω/J. We attribute the response to Cooper pair breaking and suppression of the superconducting energy gap induced by nonequilibrium quasiparticles.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1672  
Permanent link to this record
 

 
Author Hoogeveen, R. W. M.; Yagoubov, P. A.; Maurellis, A.; Koshelets, V. P.; Shitov, S. V.; Mair, U.; Krocka, M.; Wagner, G.; Birk, M.; Huebers, H.-W.; Richter, H.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Ellison, B.N.; Kerridge, B.J.; Matheson, D. N.; Alderman, B.; Harman, M.; Siddans, R.; Reburn, J. url  doi
openurl 
  Title New cryogenic heterodyne techniques applied in TELIS: the balloonborne THz and submillimeter limb sounder for atmospheric research Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5152 Issue Pages 347-355  
  Keywords TELIS, limb sounder, heterodyne detection, terahertz, sub millimeter, cryogenic, limb sounding, balloon borne, atmospheric research  
  Abstract (up) We present a design concept for a new state-of-the-art balloon borne atmospheric monitor that will allow enhanced limb sounding of the Earth’s atmosphere within the submillimeter and far-infrared wavelength spectral range: TELIS, TErahertz and submm LImb Sounder. The instrument is being developed by a consortium of major European institutes that includes the Space Research Organization of the Netherlands (SRON), the Rutherford Appleton Laboratory (RAL) will utilize state-of-the-art superconducting heterodyne technology and is designed to be a compact, lightweight instrument cpaable of providing broad spectral coverage, high spectral resolution and long flight duration ( 24 hours duration during a single flight campaign). The combination of high sensitivity and extensive flight duration will allow evaluation of the diurnal variation of key atmospheric constitutenets sucyh as OH, HO2, ClO, BrO togehter will onger lived constituents such as O3, HCL and N2O. Furthermore, TELIS will share a common balloon platform to that of the MIPAS-B Fourier Transform Spectrometer, developed by the Institute of Meteorology and Climate research of the over an extended spectral range. The combination of the TELIS and MIPAS instruments will provide atmospheric scientists with a very powerful observational tool. TELIS will serve as a testbed for new cryogenic heterodyne detection techniques, and as such it will act as a prelude to future spaceborne instruments planned by the European Space Agency (ESA).  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Strojnik, M.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Infrared Spaceborne Remote Sensing XI  
  Notes Approved no  
  Call Number Serial 1508  
Permanent link to this record
 

 
Author Semenov, A. D.; Gol’tsman, G. N. url  doi
openurl 
  Title Nonthermal mixing mechanism in a diffusion-cooled hot-electron detector Type Journal Article
  Year 2000 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 87 Issue 1 Pages 502-510  
  Keywords NbN HEB mixers, nonthermal  
  Abstract (up) We present an analysis of a diffusion-cooled hot-electron detector fabricated from clean superconducting material with low transition temperature. The distinctive feature of a clean material, i.e., material with large electron mean free path, is a relatively weak inelastic electron scattering that is not sufficient for the establishment of an elevated thermodynamic electron temperature when the detector is subjected to irradiation. We propose an athermal model of a diffusion-cooled detector that relies on suppression of the superconducting energy gap by the actual dynamic distribution of excess quasiparticles. The resistive state of the device is caused by the electric field penetrating into the superconducting bridge from metal contacts. The dependence of the penetration length on the energy gap delivers the detection mechanism. The sources of the electric noise are equilibrium fluctuations of the number of thermal quasiparticles and frequency dependent shot noise. Using material parameters typical for A1, we evaluate performance of the device in the heterodyne regime at terahertz frequencies. Estimates show that the mixer may have a noise temperature of a few quantum limits and a bandwidth of a few tens of GHz, while the required local oscillator power is in the μW range due to ineffective suppression of the energy gap by quasiparticles with high energies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1558  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Paveliev, D. G. url  doi
openurl 
  Title Heterodyne source of THz range based on semiconductor superlattice multiplier Type Conference Article
  Year 2011 Publication IRMMW-THz Abbreviated Journal IRMMW-THz  
  Volume Issue Pages 1-2  
  Keywords NbN HEB mixer, superlattice  
  Abstract (up) We present the results of our studies of the possibility of developing a heterodyne receiver incorporating a hot-electron bolometer mixer as the detector and a semiconductor superlattice multiplier driven by a reference synthesizer as the local oscillator. We observe that such a local oscillator offers enough power in the terahertz range to pump the HEB into the operating state.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number 6105209 Serial 1384  
Permanent link to this record
 

 
Author Pentin, I. V.; Smirnov, A. V.; Ryabchun, S. A.; Ozhegov, R. V.; Gol’tsman, G. N.; Vaks, V. L.; Pripolzin, S. I.; Pavel’ev, D. G.; Koshurinov, Y. I.; Ivanov, A. S. url  doi
openurl 
  Title Semiconducting superlattice as a solid-state terahertz local oscillator for NbN hot-electron bolometer mixers Type Journal Article
  Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.  
  Volume 57 Issue 7 Pages 971-974  
  Keywords semiconducting superlattice frequency multiplier, NbN HEB mixers  
  Abstract (up) We present the results of our studies of the semiconducting superlattice (SSL) frequency multiplier and its application as part of the solid state local oscillator (LO) in the terahertz heterodyne receiver based on a NbN hot-electron bolometer (HEB) mixer. We show that the SSL output power level increases as the ambient temperature is lowered to 4.2 K, the standard HEB operation temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7842 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1378  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: