|   | 
Details
   web
Records
Author Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D.
Title Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.
Volume 27 Issue 2 Pages 1317-1320
Keywords YBCO, HTS, Nb HEB mixers
Abstract (up) A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1941-0069 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1681
Permanent link to this record
 

 
Author Lusche, R.; Semenov, A.; Ilin, K.; Siegel, M.; Korneeva, Y.; Trifonov, A.; Korneev, A.; Goltsman, G.; Vodolazov, D.; Hübers, H.-W.
Title Effect of the wire width on the intrinsic detection efficiency of superconducting-nanowire single-photon detectors Type Journal Article
Year 2014 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 116 Issue 4 Pages 043906 (1 to 9)
Keywords NbN SSPD, SNSPD, TaN
Abstract (up) A thorough spectral study of the intrinsic single-photon detection efficiency in superconducting TaN and NbN nanowires with different widths has been performed. The experiment shows that the cut-off of the intrinsic detection efficiency at near-infrared wavelengths is most likely controlled by the local suppression of the barrier for vortex nucleation around the absorption site. Beyond the cut-off quasi-particle diffusion in combination with spontaneous, thermally activated vortex crossing explains the detection process. For both materials, the reciprocal cut-off wavelength scales linearly with the wire width where the scaling factor agrees with the hot-spot detection model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1357
Permanent link to this record
 

 
Author Karasik, B.S.; Milostnaya, I.I.; Zorin, M.A.; Elantev, A.I.; Gol'tsman, G.N.; Gershenzon, E.M.
Title Subnanosecond S-N and N-S switching of YBCO film induced by current pulse Type Journal Article
Year 1994 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 235-240 Issue Pages 1981-1982
Keywords YBCO HTS switches
Abstract (up) A transition of YBCO bridge 60 nm thick from superconducting to normal state induced by an abrupt current step has been studied. A subnanosecond stage has been observed during both S-N and N-S transition. The data obtained can be explained by hot-electron phenomena. On the basis of experimental results a prediction of picosecond switch performance has been made.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1633
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N.
Title Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 36 Issue 12 Pages 1103-1105
Keywords NbN HEB mixer
Abstract (up) Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1389
Permanent link to this record
 

 
Author Shcherbatenko, M.; Lobanov, Y.; Semenov, A.; Kovalyuk, V.; Korneev, A.; Ozhegov, R.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Coherent detection of weak signals with superconducting nanowire single photon detector at the telecommunication wavelength Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10229 Issue Pages 0G (1 to 12)
Keywords SSPD mixer, SNSPD, coherent detection, weak signal detection, superconducting nanostructures
Abstract (up) Achievement of the ultimate sensitivity along with a high spectral resolution is one of the frequently addressed problems, as the complication of the applied and fundamental scientific tasks being explored is growing up gradually. In our work, we have investigated performance of a superconducting nanowire photon-counting detector operating in the coherent mode for detection of weak signals at the telecommunication wavelength. Quantum-noise limited sensitivity of the detector was ensured by the nature of the photon-counting detection and restricted by the quantum efficiency of the detector only. Spectral resolution given by the heterodyne technique and was defined by the linewidth and stability of the Local Oscillator (LO). Response bandwidth was found to coincide with the detector’s pulse width, which, in turn, could be controlled by the nanowire length. In addition, the system noise bandwidth was shown to be governed by the electronics/lab equipment, and the detector noise bandwidth is predicted to depend on its jitter. As have been demonstrated, a very small amount of the LO power (of the order of a few picowatts down to hundreds of femtowatts) was required for sufficient detection of the test signal, and eventual optimization could lead to further reduction of the LO power required, which would perfectly suit for the foreseen development of receiver matrices and the need for detection of ultra-low signals at a level of less-than-one-photon per second.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Prochazka, I.; Sobolewski, R.; James, R.B.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Photon counting applications
Notes Approved no
Call Number 10.1117/12.2267724 Serial 1201
Permanent link to this record