toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Baselmans, J.; Kooi, J.; Baryshev, A.; Yang, Z. Q.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  openurl
  Title Full characterization of small volume NbN HEB mixers for space applications Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 16th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 457-462  
  Keywords NbN HEB mixers  
  Abstract (down) NbN phonon cooled HEB’s are one of the most promising bolometer mixer technologies for (near) future (space) applications. Their performance is usually quantified by mea- suring the receiver noise temperature at a given IF frequency, usually around 1 – 2 GHz. However, for any real applications it is vital that one fully knows all the relevant properties of the mixer, including LO power, stability, direct detection, gain bandwidth and noise bandwidth, not only the noise temperature at low IF frequencies. To this aim we have measured all these parameters at the optimal operating point of one single, small volume quasioptical NbN HEB mixer. We find a minimum noise temperature of 900 K at 1.46 THz. We observe a direct detection effect indicated by a change in bias current when changing from a 300 K hot load to a 77 K cold load. Due to this effect we overestimate the noise temperature by about 22% using a 300 K hot load and a 77 K cold load. The LO power needed to reach the optimal operating point is 80 nW at the receiver lens front, 59 nW inside the NbN bridge. However, using the isothermal technique we find a power absorbed in the NbN bridge of 25 nW, a difference of about a factor 2. We obtain a gain bandwidth of 2.3 GHz and a noise bandwidth of 4 GHz. The system Allan time is about 1 sec. in a 50 MHz spectral bandwidth and a deviation from white noise integration (governed by the radiometer equation) occurs at 0.2 sec., which implies a maximum integration time of a few seconds in a 1 MHz bandwidth spectrometer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 363  
Permanent link to this record
 

 
Author 0kunev, 0.; Dzardanov, A.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title NbN hot electron waveguide mixer for 100 GHz operation Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 214-224  
  Keywords waveguide NbN HEB mixers  
  Abstract (down) NbN is a promising superconducting material used to develope hot- electron superconducting mixers with an IF bandwidth over 1 GHz. In the 100 GHz frequency range, the following parameters were obtained for NbN films 50 A thick: the noise temperature of the receiver (DSB) 1000 K; the conversion losses 10 d13, the IF bandwidth 1 GHz; the local oscillator power 1 /LW. An increase of NbN film thickness up to 80-100 A and increase of working temperature up to 7-8 K, and a better mixer matching may allow to broader the IF band up to 3 Gllz, to reduce the conversion losses down to 3-5 dB and the noise tempera- ture down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1644  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Okunev, O. V.; Dzardanov, A. L.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E. url  doi
openurl 
  Title NbN hot electron superconducting mixers for 100 GHz operation Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 3065-3068  
  Keywords NbN HEB mixers  
  Abstract (down) NbN is a promising superconducting material for hot-electron superconducting mixers with an IF bandwidth larger than 1 GHz. In the 1OO GHz frequency range, the following parameters were obtained for 50 /spl Aring/ thick NbN films at 4.2 K: receiver noise temperature (DSB) /spl sim/1000 K; conversion loss /spl sim/10 dB; IF bandwidth /spl sim/1 GHz; and local oscillator power /spl sim/1 /spl mu/W. An increase of the critical current of the NbN film, increased working temperature, and a better mixer matching may allow a broader IF bandwidth up to 2 GHz, reduced conversion losses down to 3-5 dB and a receiver noise temperature (DSB) down to 200-300 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes About LO power required Approved no  
  Call Number Serial 255  
Permanent link to this record
 

 
Author Gol'tsman, G.; Jacobsson, S.; Ekstrom, H.; Karasik, B.; Kollberg, E.; Gershenzon, E. url  openurl
  Title Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 209-213a  
  Keywords NbN HEB mixers  
  Abstract (down) NbN hot-electron mixers combined with slot-line tapered antennas on Si wdnitride membranes had been fabricated. Several strips of 1 gm wide and 5 tan long made from 100 A NbN film are inserted into the slot antenna. IV-curves under local oscillator power in 300-350 GHz frequency range and conversion gain dependencies on intermediate fre- quency in the 0.1-1 GHz range are measured and compared with that for 100 GHz frequency band. Our results show that pumped IV-curves and intermediate frequency bands are different for 100 GHz and 300 GHz frequency ranges. The interpretation exploits the fact that for the lowest radiation frequency the superconducting energy gap is larger than the radiation quantum energy while they are comparable at the higher frequency. Tha results show that such mixers have good perspectives for terahertz receiving technology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1643  
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages 361-370  
  Keywords NbN HEB mixers  
  Abstract (down) NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 1521  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: