toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Semenov, A. D.; Heusinger, M. A.; Renk, K. F.; Menschikov, E.; Sergeev, A. V.; Elant'ev, A. I.; Goghidze, I. G.; Gol'tsman, G. N. url  doi
openurl 
  Title Influence of phonon trapping on the performance of NbN kinetic inductance detectors Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3083-3086  
  Keywords NbN KID  
  Abstract (down) Voltage and microwave photoresponse of NbN thin films to modulated and pulsed optical radiation reveals, far below the superconducting transition, a response time consistent with the lifetime of nonequilibrium quasiparticles. We show that even in 5 nm thick films at 4.2 K the phonon trapping is significant resulting in a quasiparticle lifetime of a few nanoseconds that is an order of magnitude larger than the recombination time. Values and temperature dependence of the quasiparticle lifetime obey the Bardeen-Cooper-Schrieffer theory and are in quantitative agreement with the electron-phonon relaxation rate determined from the resistive response near the superconducting transition. We discuss a positive effect of the phonon trapping on the performance of kinetic inductance detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1598  
Permanent link to this record
 

 
Author Beck, Matthias; Leiderer, Paul; Kabanov, Viktor V.; Gol'tsman, Gregory; Helm, Manfred; Demsar, Jure url  openurl
  Title Energy-gap dynamics of a superconductor NbN studied by time-resolved terahertz spectroscopy Type Abstract
  Year 2012 Publication INIS Abbreviated Journal INIS  
  Volume 45 Issue 12 Pages 1-3  
  Keywords NbN energy gap  
  Abstract (down) Using time-resolved terahertz (THz) spectroscopy we performed direct studies of the photoinduced suppression and recovery of the SC gap in a conventional SC NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the important microscopic constants: the Cooper pair-breaking rate via phonon absorption and the bare quasiparticle recombination rate. From the latter we were able to extract the dimensionless electron-phonon coupling constant, λ=1.1±0.1, in excellent agreement with theoretical estimates. The technique also allowed us to determine the absorbed energy required to suppress SC, which in NbN equals the thermodynamic condensation energy (in cuprates the two differ by an order of magnitude). Finally, we present the first studies of dynamics following resonant excitation with intense narrow band THz pulses tuned to above and below the superconducting gap. These suggest an additional process, particularly pronounced near Tc, that could be attributed to amplification of SC via effective quasiparticle cooling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1383  
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol'tsman, G. N.; Demsar, J. doi  openurl
  Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Journal Article
  Year 2011 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 107 Issue 17 Pages 4  
  Keywords NbN thin film, energy gap dynamics  
  Abstract (down) Using time-domain terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, λ=1.1±0.1, which is in excellent agreement with theoretical estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 641  
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J. url  openurl
  Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
  Year 2011 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN thin film, energy gap dynamics  
  Abstract (down) Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 641 Approved no  
  Call Number Serial 1388  
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G. url  doi
openurl 
  Title Probing the stability of HEB mixers with microwave injection Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300404 (1 to 4)  
  Keywords NbN HEB mixer, stability, Allan-variance  
  Abstract (down) Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1355  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: