|   | 
Details
   web
Records
Author Kooi, Jacob Willem
Title Advanced receivers for submillimeter and far infrared astronomy Type Book Whole
Year 2008 Publication University of Groningen Abbreviated Journal RUG
Volume Issue Pages
Keywords HEB, SIS, TES, NEP, noise temperature, IF bandwidth, waveguide, impedance, conversion gain, FTS, integrated array, stability, Allan variance, multi-layer antireflection coating
Abstract
Address (up)
Corporate Author Thesis Doctoral thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-367-3653-4 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 881
Permanent link to this record
 

 
Author Ovchinnikov, Yu. N.; Varlamov, A. A.
Title Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal
Volume 0910.2659v1 Issue Pages 1-4
Keywords superconducting nanowire, resistance calculation
Abstract The theory of current transport in a narrow superconducting channel accounting for thermal fluctuations is developed. These fluctuations result in the appearance of small but finite dissipation in the sample. The value of corresponding voltage is found as the function of temperature (close to transition temperature) and arbitrary bias current. It is demonstrated that the value of the activation energy (exponential factor in the Arrenius law) when current approaches to the critical one is proportional to (1-J/Jc)^(5/4). This result is in concordance with the one for the affine phenomenon of the Josephson current decay due to the thermal phase fluctuations, where the activation energy proportional (1-J/J_c)^(3/2)(the difference in the exponents is related to the additional current dependence of the order parameter). Found dependence of the activation energy on current explains the enormous discrepancy between the theoretically predicted before and the experimentally observed broadening of the resistive transition.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv:0910.2659v1; 4 pages, 3 figures Approved no
Call Number Serial 931
Permanent link to this record
 

 
Author Huard, B.; Pothier, H.; Esteve, D.; Nagaev, K. E.
Title Electron heating in metallic resistors at sub-Kelvin temperature Type Journal Article
Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 76 Issue Pages 165426(1-9)
Keywords electron heating in resistor, HEB distributed model, HEB model, hot electrons
Abstract In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this paper is to present a general solution of the problem in a form that can easily be used in practical situations. As an application, we compute two quantities that depend on the electronic temperature profile: the second and the third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for instance, in time-resolved calorimetry experiments.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk as example for writing the article on the HEB model. Approved no
Call Number Serial 936
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
Year 2014 Publication Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications
Volume Issue Pages 113-125
Keywords SIS mixer, SIR, THz imaging
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
Address (up)
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-8828-1 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1368
Permanent link to this record
 

 
Author Larrey, V.; Villegier, J. -C.; Salez, M.; Miletto-Granozio, F.; Karpov, A.
Title Processing and characterization of high Jc NbN superconducting tunnel junctions for THz analog circuits and RSFQ Type Journal Article
Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 9 Issue 2 Pages 3216-3219
Keywords RSFQ, NbN, SIS
Abstract A generic NbN Superconducting Tunnel Junctions (STJ) technology has been developed using conventional substrates (Si and SOI-SIMOX) for making THz spectrometers including SIS receivers and RSFQ logic gates. NbN/MgO/NbN junctions with area of 1 /spl mu/m/sup 2/, Jc of 10 kA/cm/sup 2/ and low sub-gap leakage current (Vm>25 mV) are currently obtained from room temperature sputtered multilayers followed by a post-annealing at 250/spl deg/C. Using a thin MgO buffer layer deposited underneath the NbN electrodes, ensures lower NbN surface resistance values (Rs=7 /spl mu//spl Omega/) at 10 GHz and 4 K. Epitaxial NbN [100] films on MgO [100] with high gap frequency (1.4 THz) have also been achieved under the same deposition conditions at room temperature. The NbN SIS has shown good I-V photon induced steps when LO pumped at 300 GHz. We have developed an 8 levels Al/NbN multilayer process for making 1.5 THz SIS mixers (including Al antennas) on Si membranes patterned in SOI-SIMOX. Using the planarization techniques developed at the Si-MOS CEA-LETI Facility, we have also demonstrated on the possibility of extending our NbN technology to high level RSFQ circuit integration with 0.5 /spl mu/m/sup 2/ junction area, made on large area substrates (up to 8 inches).
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1081
Permanent link to this record
 

 
Author Samsonova, Alena; Zolotov, Philipp; Baeva, Elmira; Lomakin, Andrey; Titova, Nadezhda; Kardakova, Anna; Goltsman, Gregory
Title Signatures of surface magnetic disorder in thin niobium films Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume Issue Pages 1-1
Keywords Temperature measurement, Temperature dependence, Superconducting magnets, Superconducting transition temperature, Substrates, Resistance, Scattering
Abstract We present our studies on the evolution of the normal and superconducting properties with thickness of thin Nb films with a low level of non-magnetic disorder (kFl 150 for the thickest film in the set). The analysis of the superconducting behavior points to the presence of magnetic moments, hidden in the native oxide on the surface of Nb films. Using the Abrikosov-Gorkov theory, we obtain the density of surface magnetic moments of 1013 cm-2, which is in agreement with the previously reported data for Nb films.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1162
Permanent link to this record
 

 
Author Kardakova, A.; Shishkin, A.; Semenov, A.; Goltsman, G. N.; Ryabchun, S.; Klapwijk, T. M.; Bousquet, J.; Eon, D.; Sacépé, B.; Klein, T.; Bustarret, E.
Title Relaxation of the resistive superconducting state in boron-doped diamond films Type Journal Article
Year 2016 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 93 Issue 6 Pages 064506
Keywords boron-doped diamond films, resistive superconducting state, relaxation time
Abstract We report a study of the relaxation time of the restoration of the resistive superconducting state in single crystalline boron-doped diamond using amplitude-modulated absorption of (sub-)THz radiation (AMAR). The films grown on an insulating diamond substrate have a low carrier density of about 2.5×1021cm−3 and a critical temperature of about 2K. By changing the modulation frequency we find a high-frequency rolloff which we associate with the characteristic time of energy relaxation between the electron and the phonon systems or the relaxation time for nonequilibrium superconductivity. Our main result is that the electron-phonon scattering time varies clearly as T−2, over the accessible temperature range of 1.7 to 2.2 K. In addition, we find, upon approaching the critical temperature Tc, evidence for an increasing relaxation time on both sides of Tc.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2469-9950 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1167
Permanent link to this record
 

 
Author Baksheeva, K.; Vdovydchenko, A.; Gorshkov, K.; Ozhegov, R.; Kinev, N.; Koshelets, V.; Goltsman, G.
Title Study of human skin radiation in the terahertz frequency range Type Conference Article
Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1410 Issue Pages 012076 (1 to 5)
Keywords SIS mixer, SIR, applications, medicine, sympathetic nervous system, SNS
Abstract The radiation of human skin in the terahertz frequency range under the influence of mental stresses has been studied in the current work. An experimental setup for observation of changes in human skin radiation, which occur under the influence of psychological stresses, by means of a superconducting integrated receiver has been developed. More than 30 volunteers participate in these studies, which allows us to verify presence of correlation between the signals from the superconducting integrated terahertz receiver and other sensors that monitor human mental stress.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1272
Permanent link to this record
 

 
Author Matyushkin, Y. E.; Gayduchenko, I. A.; Moskotin, M. V.; Goltsman, G. N.; Fedorov, G. E.; Rybin, M. G.; Obraztsova, E. D.
Title Graphene-layer and graphene-nanoribbon FETs as THz detectors Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051054
Keywords field-effect transistor, FET, monolayer graphene, graphene nanoribbons
Abstract We report on detection of sub-THz radiation (129-430 GHz) using graphene based asymmetric field-effect transistor (FET) structures with different channel geometry: monolayer graphene, graphene nanoribbons. In all devices types we observed the similar trends of response on sub-THz radiation. The response fell with increasing frequency at room temperature, but increased with increasing frequency at 77 K. Our calculations show that the change in the trend of the frequency dependence at 77 K is associated with the appearance of plasma waves in the graphene channel. Unusual properties of p-n junctions in graphene are highlighted using devices of special geometry.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1300
Permanent link to this record
 

 
Author Moskotin, M. V.; Gayduchenko, I. A.; Goltsman, G. N.; Titova, N.; Voronov, B. M.; Fedorov, G. F.; Pyatkov, F.; Hennrich, F.
Title Bolometric effect for detection of sub-THz radiation with devices based on carbon nanotubes Type Conference Article
Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1124 Issue Pages 051050 (1 to 5)
Keywords field-effect transistor, FET, carbon nanotube, CNT
Abstract In this work we investigate the response on THz radiation of a FET device based on an individual carbon nanotube conductance channel. It was already shown, that the response of such devices can be either of diode rectification origin or of thermoelectric effect origin or of their combination. In this work we demonstrate that at 77K and 8K temperatures strong bolometric effect also makes a significant contribution to the response.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1301
Permanent link to this record