|   | 
Details
   web
Records
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop
Volume Issue Pages
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address (down) Monterey, CA, USA
Corporate Author Thesis
Publisher Place of Publication Editor Wold, J.; Davidson, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no
Call Number Serial 1829
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.
Address (down) Monterey, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002
Notes id.37 Approved no
Call Number Serial 1534
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address (down) Leeds, UK
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author Antipov, S. V.; Vachtomin, Yu. B.; Maslennikov, S. N.; Smirnov, K. V.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Goltsman, G. N.
Title Noise performance of quasioptical ultrathin NbN hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW
Volume 2 Issue Pages 592-594
Keywords NbN HEB mixers
Abstract To put space-based and airborne heterodyne instruments into operation at frequencies above 1 THz the superconducting NbN hot-electron bolometer (HEB) will be incorporated into heterodyne receiver as a mixer. At frequencies above 1.3 THz the sensitivity of the NbN HEB mixers outperform the one of the Schottky diodes and SIS-mixers, and the receiver noise temperature of the NbN HEB mixers increase with frequency. In this paper we present the results of the noise temperature measurements within one batch of NbN HEB mixers based on 3.5 mn thick superconducting NbN film grown on Si substrate with MgO buffer layer at the LO frequencies 2.5 THz and 3.8 THz.
Address (down) Kharkov, Ukraine
Corporate Author Thesis
Publisher Place of Publication Kharkov, Ukraine Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)
Notes Approved no
Call Number Serial 351
Permanent link to this record
 

 
Author Maslennikov, S. N.; Morozov, D. V.; Ozhegov, R. V.; Smirnov, K. V.; Okunev, O. V.; Gol’tsman, G. N.
Title Imaging system for submillimeter wave range based on AlGaAs/GaAs hot electron bolometer mixers Type Conference Article
Year 2004 Publication Proc. 5-th MSMW Abbreviated Journal Proc. 5-th MSMW
Volume 2 Issue Pages 558-560
Keywords AlGaAs/GaAs HEB mixers
Abstract Electromagnetic radiation of the submillimeter (SMM) range is dispersed and absorbed significantly less than infrared (IR) radiation when passing through different objects. That is the reason for the development of an SMM imaging system. In this paper, we discuss the design of an SMM heterodyne imager, based on a matrix of AlGaAs/GaAs heterostructure hot electron bolometer mixers (HEB) with relatively high (about 77 K) operating temperature. The predicted double side band (DSB) noise temperature is about 1000 K and optimal local oscillator (LO) power is about 1 /spl mu/W for such mixers, which seems to be quite prospective for an SMM heterodyne imager.
Address (down) Kharkov, Ukraine
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference The Fifth International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter, and Submillimeter Waves (IEEE Cat. No.04EX828)
Notes Approved no
Call Number Serial 1487
Permanent link to this record