toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Pernice, W.; Schuck, C.; Li, M.; Goltsman, G. N.; Sergienko, A. V.; Tang, H. X. openurl 
  Title High speed travelling wave single-photon detectors with near-unity quantum efficiency Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 1-14  
  Keywords SPD  
  Abstract Ultrafast, high quantum efficiency single photon detectors are among the most sought-after elements in modern quantum optics and quantum communication. Close-to-unity photon detection efficiency is essential for scalable measurement-based quantum computation, quantum key distribution, and loophole-free Bell experiments. However, imperfect modal matching and finite photon absorption rates have usually limited the maximum attainable detection efficiency of single photon detectors. Here we demonstrate a superconducting nanowire detector atop nanophotonic waveguides and achieve single photon detection efficiency up to 94% at telecom wavelengths. Our detectors are fully embedded in a scalable, low loss silicon photonic circuit and provide ultrashort timing jitter of 18ps at multi-GHz detection rates. Exploiting this high temporal resolution we demonstrate ballistic photon transport in silicon ring resonators. The direct implementation of such a detector with high quantum efficiency, high detection speed and low jitter time on chip overcomes a major barrier in integrated quantum photonics.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1108.5299 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 661  
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Lang, S.; Leiderer, P.; Kabanov, V. V.; Gol’tsman, G. N.; Demsar, J. url  openurl
  Title Energy-gap dynamics of superconducting NbN thin films studied by time-resolved terahertz spectroscopy Type Miscellaneous
  Year 2011 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords NbN thin film, energy gap dynamics  
  Abstract Using time-domain Terahertz spectroscopy we performed direct studies of the photoinduced suppression and recovery of the superconducting gap in a conventional BCS superconductor NbN. Both processes are found to be strongly temperature and excitation density dependent. The analysis of the data with the established phenomenological Rothwarf-Taylor model enabled us to determine the bare quasiparticle recombination rate, the Cooper pair-breaking rate and the electron-phonon coupling constant, \lambda = 1.1 +/- 0.1, which is in excellent agreement with theoretical estimates.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 641 Approved no  
  Call Number Serial 1388  
Permanent link to this record
 

 
Author Korneev, Alexander; Korneeva, Yulia; Florya, Irina; Elezov, Michael; Manova, Nadezhda; Tarkhov, Michael; An, Pavel; Kardakova, Anna; Isupova, Anastasiya; Chulkova, Galina; Voronov, Boris openurl 
  Title Recent advances in superconducting NbN single-photon detector development Type Conference Article
  Year 2011 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 8072 Issue Pages 807202 (1 to 10)  
  Keywords SSPD  
  Abstract Superconducting single-photon detector (SSPD) is a planar nanostructure patterned from 4-nm-thick NbN film deposited on sapphire substrate. The sensitive element of the SSPD is 100-nm-wide NbN strip. The device is operated at liquid helium temperature. Absorption of a photon leads to a local suppression of superconductivity producing subnanosecond-long voltage pulse. In infrared (at 1550 nm and longer wavelengths) SSPD outperforms avalanche photodiodes in terms of detection efficiency (DE), dark counts rate, maximum counting rate and timing jitter. Efficient single-mode fibre coupling of the SSPD enabled its usage in many applications ranging from single-photon sources research to quantum cryptography. Recently we managed to improve the SSPD performance and measured 25% detection efficiency at 1550 nm wavelength and dark counts rate of 10 s-1. We also improved photon-number resolving SSPD (PNR-SSPD) which realizes a spatial multiplexing of incident photons enabling resolving of up to 4 simultaneously absorbed photons. Another improvement is the increase of the photon absorption using a λ/4 microcavity integrated with the SSPD. And finally in our strive to increase the DE at longer wavelengths we fabricated SSPD with the strip almost twice narrower compared to the standard 100 nm and demonstrated that in middle infrared (about 3 μm wavelength) these devices have DE several times higher compared to the traditional SSPDs.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 663  
Permanent link to this record
 

 
Author Manova, N. N.; Korneeva, Yu. P.; Korneev, A. A.; Slysz, W.; Voronov, B. M.; Gol'tsman, G. N. url  doi
openurl 
  Title Superconducting NbN single-photon detector integrated with quarter-wave resonator Type Journal Article
  Year 2011 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.  
  Volume 37 Issue 5 Pages 469-471  
  Keywords SSPD, SNSPD  
  Abstract The spectral dependence of the quantum efficiency of superconducting NbN single-photon detectors integrated with quarter-wave resonators based on Si3N4, SiO2, and SiO layers has been studied.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 664  
Permanent link to this record
 

 
Author Miller, Aaron J.; Lita, Adriana E.; Calkins, Brice; Vayshenker, Igor; Gruber, Steven M.; Nam, Sae Woo openurl 
  Title Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent Type Journal Article
  Year 2011 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 19 Issue 10 Pages 9102-9110  
  Keywords TES  
  Abstract We present a compact packaging technique for coupling light from a single-mode telecommunication fiber to cryogenic single-photon sensitive devices. Our single-photon detectors are superconducting transition-edge sensors (TESs) with a collection area only a factor of a few larger than the area of the fiber core which presents significant challenges to low-loss fiber-to-detector coupling. The coupling method presented here has low loss, cryogenic compatibility, easy and reproducible assembly and low component cost. The system efficiency of the packaged single-photon counting detectors is verified by the “triplet method” of power-source calibration along with the “multiple attenuator” method that produces a calibrated single-photon flux. These calibration techniques, when used in combination with through-wafer imaging and fiber back-reflection measurements, give us confidence that we have achieved coupling losses below 1 % for all devices packaged according to the self-alignment method presented in this paper.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 666  
Permanent link to this record
 

 
Author Steudle, Gesine A.; Schietinger, Stefan; Höckel, David; Dorenbos, Sander N.; Zwiller, Valery; Benson, Oliver openurl 
  Title Quantum nature of light measured with a single detector Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 7  
  Keywords  
  Abstract We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1107.1353 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 667  
Permanent link to this record
 

 
Author Sprengers, J.P.; Gaggero, A.; Sahin, D.; Nejad, S. Jahanmiri; Mattioli, F.; Leoni, R.; Beetz, J.; Lermer, M.; Kamp, M.; Höfling, S.; Sanjines, R.; Fiore, A. openurl 
  Title Waveguide single-photon detectors for integrated quantum photonic circuits Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 11  
  Keywords SPD  
  Abstract he generation, manipulation and detection of quantum bits (qubits) encoded on single photons is at the heart of quantum communication and optical quantum information processing. The combination of single-photon sources, passive optical circuits and single-photon detectors enables quantum repeaters and qubit amplifiers, and also forms the basis of all-optical quantum gates and of linear-optics quantum computing. However, the monolithic integration of sources, waveguides and detectors on the same chip, as needed for scaling to meaningful number of qubits, is very challenging, and previous work on quantum photonic circuits has used external sources and detectors. Here we propose an approach to a fully-integrated quantum photonic circuit on a semiconductor chip, and demonstrate a key component of such circuit, a waveguide single-photon detector. Our detectors, based on superconducting nanowires on GaAs ridge waveguides, provide high efficiency (20%) at telecom wavelengths, high timing accuracy (60 ps), response time in the ns range, and are fully compatible with the integration of single-photon sources, passive networks and modulators.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1108.5107 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 668  
Permanent link to this record
 

 
Author Engel, Andreas; Aeschbacher, Adrian; Inderbitzin, Kevin; Schilling, Andreas; Il'in, Konstantin; Hofherr, Matthias; Siegel, Michael; Semenov, Alexei; Hübers, Heinz-Wilhelm openurl 
  Title Tantalum nitride superconducting single-photon detectors with low cut-off energy Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 9  
  Keywords SSPD  
  Abstract Materials with a small superconducting energy gap favor a high detection efficiency of low-energy photons in superconducting nanowire single-photon detectors. We developed a TaN detector with smaller gap and lower density of states at the Fermi energy than in comparable NbN devices, while other relevant parameters remain essentially unchanged. This results in a reduction of the minimum photon energy required for direct detection to $\approx1/3$ as compared to NbN.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1110.4576 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 687  
Permanent link to this record
 

 
Author Bulaevskii, L. N.; Graf, M. J.; Batista, C. D.; Kogan, V. G. openurl 
  Title Vortex-induced dissipation in narrow current-biased thin-film superconducting strips Type Journal Article
  Year 2011 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 83 Issue 14 Pages 9  
  Keywords  
  Abstract A vortex crossing a thin-film superconducting strip from one edge to the other, perpendicular to the bias current, is the dominant mechanism of dissipation for films of thickness d on the order of the coherence length ξ and of width w much narrower than the Pearl length Λâ‰<ab>wâ‰<ab>ξ. At high bias currents I*<I<Ic the heat released by the crossing of a single vortex suffices to create a belt-like normal-state region across the strip, resulting in a detectable voltage pulse. Here Ic is the critical current at which the energy barrier vanishes for a single vortex crossing. The belt forms along the vortex path and causes a transition of the entire strip into the normal state. We estimate I* to be roughly Ic/3. Furthermore, we argue that such “hot” vortex crossings are the origin of dark counts in photon detectors, which operate in the regime of metastable superconductivity at currents between I* and Ic. We estimate the rate of vortex crossings and compare it with recent experimental data for dark counts. For currents below I*, that is, in the stable superconducting but resistive regime, we estimate the amplitude and duration of voltage pulses induced by a single vortex crossing.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SSPD Approved no  
  Call Number RPLAB @ gujma @ Serial 688  
Permanent link to this record
 

 
Author Dorenbos, S. N.; Heeres, R.W.; Driessen, E.F.C; Zwiller, V. openurl 
  Title Efficient and robust fiber coupling of superconducting single photon detectors Type Journal Article
  Year 2011 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 6  
  Keywords SSPD  
  Abstract We applied a recently developed fiber coupling technique to superconducting single photon detectors (SSPDs). As the detector area of SSPDs has to be kept as small as possible, coupling to an optical fiber has been either inefficient or unreliable. Etching through the silicon substrate allows fabrication of a circularly shaped chip which self aligns to the core of a ferrule terminated fiber in a fiber sleeve. In situ alignment at cryogenic temperatures is unnecessary and no thermal stress during cooldown, causing misalignment, is induced. We measured the quantum efficiency of these devices with an attenuated tunable broadband source. The combination of a lithographically defined chip and high precision standard telecommunication components yields near unity coupling efficiency and a system detection efficiency of 34% at a wavelength of 1200 nm. This quantum efficiency measurement is confirmed by an absolute efficiency measurement using correlated photon pairs (with $\lambda$ = 1064 nm) produced by spontaneous parametric down-conversion. The efficiency obtained via this method agrees well with the efficiency measured with the attenuated tunable broadband source.  
  Address (up)  
  Corporate Author Thesis  
  Publisher Place of Publication arXiv:1109.5809 Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 689  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: