toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title New generation of superconducting nanowire single-photon detectors Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 01006 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract We present an overview of recent results for new generation of infrared and optical superconducting nanowire single-photon detectors (SNSPDs) that has already demonstrated a performance that makes them devices-of-choice for many applications. SNSPDs provide high efficiency for detecting individual photons while keeping dark counts and timing jitter minimal. Besides superior detection performance over a broad optical bandwidth, SNSPDs are also compatible with an integrated optical platform as a crucial requirement for applications in emerging quantum photonic technologies. By embedding SNSPDs in nanophotonic circuits we realize waveguide integrated single photon detectors which unite all desirable detector properties in a single device.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1349  
Permanent link to this record
 

 
Author Galin, M. A.; Klushin, A. M.; Kurin, V. V.; Seliverstov, S. V.; Finkel, M. I.; Goltsman, G. N.; Müller, F.; Scheller, T.; Semenov, A. D. url  doi
openurl 
  Title Towards local oscillators based on arrays of niobium Josephson junctions Type Journal Article
  Year 2015 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 28 Issue 5 Pages 055002 (1 to 7)  
  Keywords Josephson junction local oscillators, JJ LO  
  Abstract Various applications in the field of terahertz technology are in urgent need of compact, wide-tunable solid-state continuous wave radiation sources with a moderate power. However, satisfactory solutions for the THz frequency range are scarce yet. Here we report on coherent radiation from a large planar array of Josephson junctions (JJs) in the frequency range between 0.1 and 0.3 THz. The external resonator providing the synchronization of JJ array is identified as a straight fragment of a single-strip-line containing the junctions themselves. We demonstrate a prototype of the quasioptical heterodyne receiver with the JJ array as a local oscillator and a hot-electron bolometer mixer.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1347  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 10004 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1351  
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Veyrat, L.; Sacépé, B.; Semenov, A. V.; Goltsman, G. N.; Kardakova, A. I.; Khrapai, V. S. url  openurl
  Title Thermal relaxation in metal films bottlenecked by diffuson lattice excitations of amorphous substrates Type Miscellaneous
  Year 2021 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages  
  Keywords metal films, NbN, InOx, Au/Ni, thermal relaxation  
  Abstract Here we examine the role of the amorphous insulating substrate in the thermal relaxation in thin NbN, InOx, and Au/Ni films at temperatures above 5 K. The studied samples are made up of metal bridges on an amorphous insulating layer lying on or suspended above a crystalline substrate. Noise thermometry was used to measure the electron temperature Te of the films as a function of Joule power per unit of area P2D. In all samples, we observe the dependence P2D∝Tne with the exponent n≃2, which is inconsistent with both electron-phonon coupling and Kapitza thermal resistance. In suspended samples, the functional dependence of P2D(Te) on the length of the amorphous insulating layer is consistent with the linear T-dependence of the thermal conductivity, which is related to lattice excitations (diffusons) for the phonon mean free path smaller than the dominant phonon wavelength. Our findings are important for understanding the operation of devices embedded in amorphous dielectrics.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1163  
Permanent link to this record
 

 
Author Titova, N. A.; Baeva, E. M.; Kardakova, A. I.; Goltsman, G. N. url  doi
openurl 
  Title Fabrication of NbN/SiNx:H/SiO2 membrane structures for study of heat conduction at low temperatures Type Conference Article
  Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1695 Issue Pages 012190  
  Keywords NbN films, insulating membrane  
  Abstract Here we report on the development of NbN/SiNx:H/SiO2-membrane structures for investigation of the thermal transport at low temperatures. Thin NbN films are known to be in the regime of a strong electron-phonon coupling, and one can assume that the phononic and electronic baths in the NbN are in local equilibrium. In such case, the cooling of the NbN-based devices strongly depends on acoustic matching to the substrate and substrate thermal characteristics. For the insulating membrane much thicker than the NbN film, our preliminary results demonstrate that the membrane serves as an additional channel for the thermal relaxation of the NbN sample. That implies a negligible role of thermal boundary resistance of the NbN-SiNx:H interface in comparison with the internal thermal resistance of the insulating membrane.  
  Address (down)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1165  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: